Search
Menu
Meadowlark Optics - Wave Plates 6/24 LB 2024

Dopant Breaks Graphene Solar Efficiency Record

Facebook X LinkedIn Email
GAINESVILLE, Fla., May 25, 2012 — Chemically treated graphene has upped the material's solar power conversion efficiency from 2.9 percent to a record-breaking 8.6 percent. Researchers at the University of Florida have taken graphene, a single-atom-thick lattice of carbon atoms, and doped it with trifluoromethanesulfonyl-amide (TFSA). The result was a near quadrupling of efficiency. Unlike previously tried doping agents, TFSA is a stable compound, so its effects are longer lasting. The dopant also improves the electrical properties of the graphene, allowing it to be better at converting sunlight into electricity. ...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: May 2012
    Glossary
    doping
    In the context of materials science and semiconductor physics, doping refers to the intentional introduction of impurities into a semiconductor material in order to alter its electrical properties. The impurities, called dopants, are atoms of different elements than those comprising the semiconductor crystal lattice. Doping is a crucial technique in semiconductor device fabrication, as it allows engineers to tailor the conductivity and other electrical characteristics of semiconductor...
    graphene
    Graphene is a two-dimensional allotrope of carbon consisting of a single layer of carbon atoms arranged in a hexagonal lattice pattern. It is the basic building block of other carbon-based materials such as graphite, carbon nanotubes, and fullerenes (e.g., buckyballs). Graphene has garnered significant attention due to its remarkable properties, making it one of the most studied materials in the field of nanotechnology. Key properties of graphene include: Two-dimensional structure:...
    AmericasArthur HebarddopingenergyFloridaGainesvillegraphenegreen photonicsResearch & TechnologySchottky junctionsilicon wafersolar cellsTFSAtrifluoromethanesulfonyl-amideUFUniversity of Florida

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.