Search
Menu
Meadowlark Optics - Wave Plates 6/24 LB 2024

The Slow-Light Race Is On

Facebook X LinkedIn Email
Marie Freebody, Contributing Editor, [email protected]

Since the notion of slow light first became a reality more than a decade ago, scientists have been exploring its use in fundamental studies of light-atom systems as well as for long-term applications in all-optical data processing, quantum communication and sensors. When light is slowed down, it is forced to interact more strongly with the confining material. This is key to devices in sensing, quantum information and all-optical signal processing for optical communication. There has been recent progress in exploiting slow light for nonlinear signal processing, such as to demonstrate...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: February 2011
    Glossary
    invisibility cloak
    An invisibility cloak is technology that would render an object or individual invisible to the observer. In scientific research, efforts to create real-life invisibility cloaks have been explored using principles of optics and metamaterials. Metamaterials are artificially engineered materials with properties not found in naturally occurring materials. By manipulating the interaction of light with metamaterials, it is theoretically possible to bend or redirect light around an object,...
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    photonic crystals
    Photonic crystals are artificial structures or materials designed to manipulate and control the flow of light in a manner analogous to how semiconductors control the flow of electrons. Photonic crystals are often engineered to have periodic variations in their refractive index, leading to bandgaps that prevent certain wavelengths of light from propagating through the material. These bandgaps are similar in principle to electronic bandgaps in semiconductors. Here are some key points about...
    all-optical data processingall-optical memoriesARC Centre of ExcellenceBasic ScienceBenjamin EggletonBragg gratingsBrillouinCentre for Ultrahigh bandwidth Devices for Optical SystemsCommunicationsCUDOSDARPAdefenseDefense Advanced Research Projects AgencyDuttonEggletonFeaturesHarrisHauHESSHowellImagingindustrialinvisibility cloakJohn HowellKraussMarie FreebodymetamaterialsMicroscopynanoNature Photonicsnonlinear signal processingoptical bufferingoptical bussesOptics ExpressOrtwin Hessphotonic crystalsquantum communicationRamanSensors & Detectorsslow lightthird-harmonic generationThomas KraussUniversity of RochesterUniversity of St. AndrewsUniversity of SurreyLasers

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.