Search
Menu
Hamamatsu Corp. - Creating a Better Future LB 1-25

Roughing Up Silicon Improves Near-Infrared Performance

Facebook X LinkedIn Email
Femtosecond laser helps boost efficiency of avalanche photodiodes.

Hank Hogan

Despite its electronic and visible spectrum prowess, silicon is an infrared weakling. Beyond 1100 nm, the material absorbs little radiation and, therefore, the response of silicon-based photodiodes fades to almost nothing. Now a research team from Harvard University in Cambridge and Radiation Monitoring Devices Inc. in Watertown, both in Massachusetts, have developed a technique that uses a femtosecond laser to significantly improve the near-IR performance of avalanche photodiodes, boosting the quantum efficiency of these devices by almost half at 1064 nm. Microstructuring the silicon...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: February 2007
    Glossary
    infrared
    Infrared (IR) refers to the region of the electromagnetic spectrum with wavelengths longer than those of visible light, but shorter than those of microwaves. The infrared spectrum spans wavelengths roughly between 700 nanometers (nm) and 1 millimeter (mm). It is divided into three main subcategories: Near-infrared (NIR): Wavelengths from approximately 700 nm to 1.4 micrometers (µm). Near-infrared light is often used in telecommunications, as well as in various imaging and sensing...
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    spectrum
    See optical spectrum; visible spectrum.
    CommunicationsindustrialinfrarednanophotonicsResearch & TechnologySensors & DetectorssiliconspectrumTech Pulse

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.