Search
Menu
Edmund Optics - Manufacturing Services 8/24 LB

Chiral Nanostructures Could Be Used to Tailor Applications

Facebook X LinkedIn Email
BATH, England, May 3, 2018 — Scientists have modeled the interaction between light and twisted molecules as the molecules transition from left- to right-handed versions, or vice versa. Understanding the behaviors of these transitional forms could lead to improved design of telecommunications components. Previously it had only been possible to study either the left- or right-handed chiral form but nothing in between. The ability to morph a molecule from one handedness to the other would allow researchers to observe how the effects of this change translate into changes in the molecule’s physical properties. ...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: May 2018
    Glossary
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    chirality
    Chirality is a property of certain molecules and objects in which they are non-superimposable on their mirror images. In other words, a chiral object or molecule cannot be exactly superimposed onto its mirror image, much like a left and right hand. The term "chirality" comes from the Greek word cheir, meaning hand, emphasizing the handedness or asymmetry of the object or molecule. A molecule or an object with this property is said to be chiral, while its non-superimposable mirror image is...
    plasmonics
    Plasmonics is a field of science and technology that focuses on the interaction between electromagnetic radiation and free electrons in a metal or semiconductor at the nanoscale. Specifically, plasmonics deals with the collective oscillations of these free electrons, known as surface plasmons, which can confine and manipulate light on the nanometer scale. Surface plasmons are formed when incident photons couple with the conduction electrons at the interface between a metal or semiconductor...
    Research & TechnologyEuropeeducationOpticsMaterialsnanoCommunicationschiralitychiral nanostructuresplasmonicsEuro News

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.