Search
Menu
PI Physik Instrumente - Space Qualified Steering LB LW 12/24

Saturable Plasmonic Metasurfaces for Laser Mode Locking

Facebook X LinkedIn Email
DIJON, France, May 27, 2020 — Researchers from France, China, and Brazil have developed plasmonic metasurfaces that provide an efficient saturable absorption that can be tuned with the polarization of light.

Researchers from the Laboratoire Interdisciplinaire Carnot de Bourgogne, at Université Bourgogne, France, and the Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, China, along with co-workers from the Department of Electrotechnology, Federal Institute of Bahia, Brazil, employed planar nanotechnologies to fabricate 2D plasmonic metasurfaces with the size, gap, and orientation, and thus well-controlled plasmonic mode that chemically synthesized counterparts handle less efficiently. The nonlinear saturable absorption under intense laser pumping was systematically investigated by altering the excitation power, the polarization, and the geometrical parameters of the plasmonic metasurfaces. The link between the polarimetric saturable absorption and the plasmonic landscape of the metasurfaces has been quantified. The researchers also implemented the saturable metasurfaces into a fiber laser cavity architecture and achieved a stable self-starting ultrashort laser pulse generation.

The team members investigated different plasmonic landscapes such as nanorods, nanocrosses, and nanorings as saturable absorbers to generate ultrafast laser pulses. They measured the modulation depth of the saturable absorption of such plasmonic metasurfaces as high as 60%.

“Such high modulation depths are uncommon, especially for thin metasurfaces,” said Philippe Grelu, a professor from Université Bourgogne. “A comparison between 2D-saturable absorbers shows that the maximum modulation depth reported is less than 11%, and a similar study with colloidal gold nanorods reports a modulation depth of only around 5%. A typical SESAM [semiconductor saturable absorber mirror] can feature a modulation depth exceeding 30%, but from a much thicker device.”

(a) SEM image of a NR array with a 50 nm gap in the long axis direction (Gy) and a 300 nm gap in the short axis direction (Gx). The horizontal scale bar represents 200 nm. The inset shows a single NR from this array, which has a length (L) of 445 nm and a width (W) of 120 nm. The vertical scale bar represents 100 nm. (b) The experimental transmission (red circles) of the NR array as a function of the input power with the excitation polarization of 18° with respect to the long axis of the NR. The modulation depth Md and typical transmission Tt are defined from the corresponding fittings (blue curve). The transmission is normalized to the value of the nearby blank glass slide. (c) Experimental excitation power and polarization dependent nonlinear transmission of a NRs array. (d) The scheme of home-built ultrafast fiber laser which integrates lithographical NRs as saturable absorber, where LD represents laser diode, WDM wavelength-division multiplexing, EDF erbium-doped fiber, ISO optical isolator, PC polarization controller, C1,2 collimators and O1,2 objectives. (e) Pulse train shown on the oscilloscope in short (300 ns, lower panel) and long (10 ms, upper panel) time ranges. Courtesy of Jiyong Wang, Aurelien Coillet, Olivier Demichel, Zhiqiang Wang, Davi Rego, Alexandre Bouhelier, Philippe Grelu and Benoit Cluzel.


Sheetak -  Cooling at your Fingertip 11/24 MR

(a) SEM image of a NR array with a 50-nm gap in the long axis direction (Gy) and a 300-nm gap in the short axis direction (Gx). The horizontal scale bar represents 200 nm. The inset shows a single NR from this array, which has a length (L) of 445 nm and a width (W) of 120 nm. The vertical scale bar represents 100 nm. (b) The experimental transmission (red circles) of the NR array as a function of the input power with the excitation polarization of 18° with respect to the long axis of the NR. The modulation depth Md and typical transmission Tt are defined from the corresponding fittings (blue curve). The transmission is normalized to the value of the nearby blank glass slide. (c) Experimental excitation power and polarization dependent nonlinear transmission of a NRs array. (d) The scheme of home-built ultrafast fiber laser that integrates lithographical NRs as saturable absorber, where LD represents laser diode, WDM wavelength-division multiplexing, EDF erbium-doped fiber, ISO optical isolator, PC polarization controller, C1,2 collimators, and O1,2 objectives. (e) Pulse train shown on the oscilloscope in short (300 ns, lower panel) and long (10 ms, upper panel) time ranges. Courtesy of Jiyong Wang, Aurelien Coillet, Olivier Demichel, Zhiqiang Wang, Davi Rego, Alexandre Bouhelier, Philippe Grelu, and Benoit Cluzel.

“The key point is to find the quantitative relationship between the nonlinear absorption and the specific plasmonic modes, and this might only be achieved by using planar nanotechnologies to fabricate the plasmonic metasurfaces,” said Grelu’s colleague, Benoit Cluzel, such as electron-beam lithography rather than spin-coating the colloidal nanoparticles onto the fiber or dipping the fiber into the nanoparticle solutions.

By integrating the plasmonic metasurfaces within a free-space section of the fiber laser architecture, the researchers obtained a stable self-starting mode-locked laser operation. The typical duration of a single soliton pulse is 729 fs, with a large signal-to-noise ratio of 75 dB in the radio-frequency domain.

“We validated saturable absorption as a general nonlinear optical property of metal nanostructures, a well-known phenomenon for semiconductor,” said Jiyong Wang, lead author of the study. “More importantly, we demonstrated a promising application for nonlinear plasmonics, a method most related studies paid little attention to.”

The research was published in Light: Science & Applications (www.doi.org/10.1038/s41377-020-0291-2).

Published: May 2020
Glossary
plasmonics
Plasmonics is a field of science and technology that focuses on the interaction between electromagnetic radiation and free electrons in a metal or semiconductor at the nanoscale. Specifically, plasmonics deals with the collective oscillations of these free electrons, known as surface plasmons, which can confine and manipulate light on the nanometer scale. Surface plasmons are formed when incident photons couple with the conduction electrons at the interface between a metal or semiconductor...
lithography
Lithography is a key process used in microfabrication and semiconductor manufacturing to create intricate patterns on the surface of substrates, typically silicon wafers. It involves the transfer of a desired pattern onto a photosensitive material called a resist, which is coated onto the substrate. The resist is then selectively exposed to light or other radiation using a mask or reticle that contains the pattern of interest. The lithography process can be broadly categorized into several...
soliton
Any isolated wave that propagates without dispersion of energy. Specifically to photonics, an ultrashort pulse of laser light that propagates through a waveguide without characteristic chromatic dispersion.
saturable absorber
A saturable absorber is a type of optical device that exhibits variable absorption properties depending on the intensity of incident light. In essence, it becomes less absorbent as the light intensity increases. This unique behavior is due to a phenomenon known as optical saturation. In a saturable absorber, when the intensity of incoming light is low, it effectively absorbs a significant portion of the light energy. However, as the light intensity increases, more and more absorbing...
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
Research & TechnologyEuropeAsia-PacificplasmonicsMicrofabricationnanofabricationChinaultrafast lasersNanorodslithographyfiber laserssolitonlight sciencesaturable absorberLasersnano

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.