Search
Menu
LightPath Technologies -  Germanium Alternative1-25 LB

Robotic Camera Mimics Eye Movement

Facebook X LinkedIn Email
ATLANTA, July 9, 2012 — Piezoelectric materials that allow a robot’s camera eye to replicate the muscle motion of a human eye could help make safer, more effective robotic tools for MRI-guided surgery and robotic rehabilitation.

The biologically inspired technology, developed by Joshua Schultz and Jun Ueda of the George W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology, could lay the groundwork for investigating research questions in systems that possess a large number of active units operating together.

“For a robot to be truly bioinspired, it should possess actuation, or motion generators, with properties in common with the musculature of biological organisms,” said Schultz, a doctoral candidate under the direction of assistant professor Ueda. “The actuators developed in our lab embody many properties in common with biological muscle, especially a cellular structure.”

 Joshua Schultz and Jun Ueda from Georgia Tech’s School of Mechanical Engineering have developed a mechanism to orient a camera using musclelike cellular actuators in a compact, lightweight package.
Joshua Schultz and Jun Ueda from Georgia Tech’s School of Mechanical Engineering have developed a mechanism to orient a camera using musclelike cellular actuators in a compact, lightweight package. (Image: Georgia Tech Photo, Billy Gallagher)

Muscles in the human eye are essentially controlled by neural impulses, Schultz said. The actuators that they are developing will be used to capture the performance and kinematics of the human eye.

Piezoelectric materials expand or contract when electricity is applied to them, providing a way to transform input signals into motion. This is the basic principle for piezoelectric actuators that have been used in various applications, but use in robotics has been limited because of the piezoelectric ceramic’s minuscule displacement.

The cellular actuator developed by the researchers connects many small actuator units in series or in parallel. Their lightweight, high-speed approach includes a single-degree-of-freedom camera positioner that can be used to illustrate and understand the performance and control of the biologically inspired actuator technology. It uses less energy than conventional camera positioning devices and offers more flexibility.

“Each musclelike actuator has a piezoelectric material and a nested hierarchical set of strain amplifying mechanisms,” Ueda said. “We are presenting a mathematical concept that can be used to predict the performance as well as select the required geometry of nested structures. We use the design of the camera positioning mechanism’s actuators to demonstrate the concepts.”

Their work shows mechanisms that can scale up the displacement of piezoelectric stacks to the range of the ocular positioning system. Previously, such stacks for this purpose were too small.

Georgia Tech doctoral candidate Joshua Schultz makes some final adjustments to the camera-positioning mechanism used in the musclelike cellular actuators of the robot vision system.
Georgia Tech doctoral candidate Joshua Schultz makes some final adjustments to the camera-positioning mechanism used in the musclelike cellular actuators of the robot vision system. (Image: Georgia Tech Photo, Billy Gallagher)


Admesy BV - Built to Perform 1-25 MR
During their experiments, the researchers sought to resolve a previous obstacle. A cable-driven eye can produce the eye’s kinematics, but rigid servomotors make it impossible for researchers to test the hypothesis for the neurological basis for eye motion.

Although some measure of flexibility could be used in software with traditional actuators, it would depend largely on having a continuously variable control signal, and it could not show how flexibility could be maintained with quantized actuation corresponding to neural recruitment phenomena.

“Unlike traditional actuators, piezoelectric cellular actuators are governed by the working principles of muscles — namely, motion results by discretely activating, or recruiting, sets of active fibers, called motor units,” Ueda said.

“Motor units are linked by flexible tissue, which serves a twofold function. It combines the action potential of each motor unit, and presents a compliant interface with the world, which is critical in unstructured environments,” he added.

The researchers presented a camera positioner driven by a novel cellular actuator technology, using a contractile ceramic to generate motion. They used 16 amplified piezoelectric stacks per side, which addressed the need for more layers of amplification. The units were placed inside a rhomboidal mechanism.

 This photo shows the camera positioning system used by researchers Joshua Schultz and Jun Ueda from Georgia Tech’s School of Mechanical Engineering.
This photo shows the camera positioning system used by researchers Joshua Schultz and Jun Ueda from Georgia Tech’s School of Mechanical Engineering. (Image: Georgia Tech Photo, Joshua Schultz)

The work offers an analysis of the force-displacement tradeoffs involved in the actuator design and shows how to find geometry that meets the requirement of the camera positioner, Schultz said.

“The goal of scaling up piezoelectric ceramic stacks holds great potential to more accurately replicate human eye motion than previous actuators,” he said. “Future work in this area will involve implantation of this technology on a multidegree-of-freedom device, applying open and closed-loop control algorithms for positioning and analysis of co-contraction phenomena.”

The team will continue to develop a design framework for highly integrated robotic systems, ranging from industrial, medical and rehabilitation robots to intelligent assistive robots.

Details of the research, funded by the National Science Foundation, were presented June 25, 2012, at the IEEE International Conference on Biomedical Robotics and Biomechatronics in Rome.

For more information, visit: www.gatech.edu

Published: July 2012
Glossary
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
camerasAmericasbiological muscle structureBiophotonicsGeorgiaGeorgia Techhuman eye movementIEEE International Conference on Biomedical Robotics and BiomechatronicsImagingindustrialItalyJoshua SchultzJun UedaMRI-guided surgeryNational Science Foundationphotonicspiezoelectric cellular actuatorpiezoelectric materialspiezoelectric stacksResearch & Technologyrobotic rehabilitationroboticsstrain amplificationTest & Measurement

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.