Search
Menu
Meadowlark Optics - Wave Plates 6/24 LB 2024

Ultrasensitive Detector Enables Lidar to Look Farther

Facebook X LinkedIn Email
JOEL WILLIAMS, ASSOCIATE EDITOR
[email protected]

A light sensor developed by the University of Texas at Austin (UT Austin) and the University of Virginia is able to amplify weak signals from far away with greater accuracy than current technology, giving autonomous vehicles a fuller picture of what’s happening on the road. The detector is able to amplify weak signals by drastically reducing noise associated with the detection process. Excessive noise causes systems to miss signals, which in the case of autonomous vehicle applications, can put passengers at risk. “Autonomous vehicles send out laser signals that bounce...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: May 2021
    Glossary
    avalanche photodiode
    A device that utilizes avalanche multiplication of photocurrent by means of hole-electrons created by absorbed photons. When the device's reverse-bias voltage nears breakdown level, the hole-electron pairs collide with ions to create additional hole-electron pairs, thus achieving a signal gain.
    lidar
    Lidar, short for light detection and ranging, is a remote sensing technology that uses laser light to measure distances and generate precise, three-dimensional information about the shape and characteristics of objects and surfaces. Lidar systems typically consist of a laser scanner, a GPS receiver, and an inertial measurement unit (IMU), all integrated into a single system. Here is how lidar works: Laser emission: A laser emits laser pulses, often in the form of rapid and repetitive laser...
    noise
    The unwanted and unpredictable fluctuations that distort a received signal and hence tend to obscure the desired message. Noise disturbances, which may be generated in the devices of a communications system or which may enter the system from the outside, limit the range of the system and place requirements on the signal power necessary to ensure good reception.
    Research & Technologyavalanche photodiodelidarautonomous vehiclesself-drivingSensors & DetectorsMaterialsnoisestaircaseUniversity of Texas at AustinUniversity of TexasUT AustinAmericasautomotiveTech Pulse

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.