Search
Menu
Edmund Optics - Manufacturing Services 8/24 LB

The Future of Colloidal Quantum Dots for SWIR Sensing

Facebook X LinkedIn Email
Colloidal quantum dots offer a scalable, cost-effective alternative to traditional SWIR sensing.

SAM WYMAN, ALLAN HILTON, AND ETHAN KLEM, SWIR VISION SYSTEMS

In the realm of advanced imaging, shortwave infrared (SWIR) technology has undergone an identity challenge for more than 20 years. Typing “SWIR imagery” into a search engine often results in the same examples: visible images juxtaposed with SWIR ones, highlighting its ability to detect bruises on apples, ascertain fill levels in opaque shampoo bottles, and pierce through foggy coastlines. Despite SWIR’s unmatched proficiency in these and other use cases in visually obscured environments, it has not reached widespread adoption. The main hurdle? Cost. The field has...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: July 2024
    Glossary
    machine vision
    Machine vision, also known as computer vision or computer sight, refers to the technology that enables machines, typically computers, to interpret and understand visual information from the world, much like the human visual system. It involves the development and application of algorithms and systems that allow machines to acquire, process, analyze, and make decisions based on visual data. Key aspects of machine vision include: Image acquisition: Machine vision systems use various...
    colloidal quantum dots
    Colloidal quantum dots (CQDs) are nanometer-sized semiconductor particles that are dispersed in a colloidal solution. These quantum dots have unique optical and electronic properties due to their size, which is typically in the range of 2 to 10 nanometers. The key characteristics and components of colloidal quantum dots include: Quantum confinement: The small size of the quantum dots leads to quantum confinement effects, where the motion of electrons and holes is restricted in all three...
    Featuresmachine visionSWIR Vision Systemscolloidal quantum dotSWIR sensorsCQDcolloidal quantum dots

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.