Search
Menu
CMC Electronics - Advanced Low-Noise 2024 LB

Shrinky Dinks Heat Up Nanopatterning

Facebook X LinkedIn Email
EVANSTON, Ill., Aug. 17, 2010 — Modeled after the popular shrinkable plastic toy Shrinky Dinks, nanoscientists are using flexible plastic sheets as the backbone of a new, inexpensive way to create, test and mass-produce large-area patterns at the nanoscale. "Anyone needing access to large-area nanoscale patterns on the cheap could benefit from this method," said Teri W. Odom, associate professor of chemistry and Dow Chemical Co. research professor in the Weinberg College of Arts and Sciences at Northwestern University. Odom led the research. "It is a simple, low-cost and high-throughput nanopatterning method that can...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: August 2010
    Glossary
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    plasmonics
    Plasmonics is a field of science and technology that focuses on the interaction between electromagnetic radiation and free electrons in a metal or semiconductor at the nanoscale. Specifically, plasmonics deals with the collective oscillations of these free electrons, known as surface plasmons, which can confine and manipulate light on the nanometer scale. Surface plasmons are formed when incident photons couple with the conduction electrons at the interface between a metal or semiconductor...
    AmericasBasic Sciencebiological sensorschemical sensorsConsumerDisplaysenergyflexible displaysgreen photonicshigh-density displaysIllinoisindustrialmetal nanoparticle arrayssnanonanofabricationnanomaterialsnanopatterningnanoscientistsNorthwestern Universityphotonicsplasmonicspolymer substratesResearch & TechnologySensors & DetectorsShrinky Dinkssolar cellsSolar Energysolvent-assisted nanoscale embossingTeri W. Odom

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.