Search
Menu
Lumencor Inc. - Power of Light 4-24 LB

Researchers Triple Carbon Nanotube Yield with Chemical Vapor Deposition

Facebook X LinkedIn Email
MOSCOW, Nov. 30, 2023 — Scientists at Skolkovo Institute of Science and Technology (Skoltech) have found a way to increase the yield of single-walled carbon nanotube film production. The materials are promising for solar cells, LEDs, flexible and transparent electronics, smart textiles, medical imaging, toxic gas detectors, filtration systems, and more. By adding hydrogen gas and carbon monoxide to the reaction chamber, the team managed to almost triple carbon nanotube yield compared to growth promoters, without compromising quality. Until now, low yield has been the bottleneck limiting the potential of that...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: November 2023
    Glossary
    graphene
    Graphene is a two-dimensional allotrope of carbon consisting of a single layer of carbon atoms arranged in a hexagonal lattice pattern. It is the basic building block of other carbon-based materials such as graphite, carbon nanotubes, and fullerenes (e.g., buckyballs). Graphene has garnered significant attention due to its remarkable properties, making it one of the most studied materials in the field of nanotechnology. Key properties of graphene include: Two-dimensional structure:...
    chemical vapor deposition
    Chemical vapor deposition is a process of applying dopants to a glass bait by flame reactions of gaseous compounds. See also outside vapor-phase oxidation; inside vapor-phase oxidation.
    Research & TechnologyMaterialsmanufacturingproductionyieldcarbon nanotubegraphenechemical vapor depositioncarbon dioxidegrowthpromotercatalystsingle-walled carbon nanotubeLight SourcesDisplaysLEDssolar cellsflexibleEuropeChemical Engineering Journal

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.