Search
Menu
Meadowlark Optics - Wave Plates 6/24 LB 2024

Novel Hybrid Material Facilitates Photon Upconversion

Facebook X LinkedIn Email
University of California, Riverside (UCR) researchers have designed a composite material that offers powerful photon upconversion capabilities and that could support a range of light-driven applications as a result. The composite is made from silicon quantum dots and the organic molecule anthracene, which is used in OLED emissions. Anthracene’s unusual properties enable it to convert lower-energy light into higher-energy light. Applications for the composite span the treatment of cancer to boosting photovoltaic efficiency. The efficiency of solar panels could be increased by...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: June 2023
    Glossary
    quantum dots
    A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    near-infrared
    The shortest wavelengths of the infrared region, nominally 0.75 to 3 µm.
    ultraviolet
    That invisible region of the spectrum just beyond the violet end of the visible region. Wavelengths range from 1 to 400 nm.
    Research & TechnologyeducationAmericasUniversity of California RiversideUniversity of Texas at AustinautomotiveenergymedicalmedicineImagingBiophotonicssolarSensors & DetectorsOLEDsOpticsquantum dotsphotovoltaicscancerMaterialssilicon photonicsnanophoton upconversionorganic-inorganic materialshybrid materialsnear-infraredultravioletLasersLight SourcesTechnology News

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.