Search
Menu
AdTech Ceramics - Ceramic Packages 1-24 LB

Microrings Make Green Gap Wavelengths Accessible for Tiny Lasers

Facebook X LinkedIn Email
GAITHERSBURG, Md., Sept. 6, 2024 — Compact, high-quality lasers that generate red and blue light have been available for years, but lasers that emit light at yellow and green wavelengths and are small enough to fit on a chip have been harder to build. Wavelengths between 532 nm and 633 nm, commonly referred to as the “green gap,” are especially challenging to produce with conventional laser gain. Green laser pointers produce light only in a narrow spectrum of green, and because they are not integrated in chips, they cannot work with other devices. The ability to develop stable, miniature lasers...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: September 2024
    Glossary
    integrated photonics
    Integrated photonics is a field of study and technology that involves the integration of optical components, such as lasers, modulators, detectors, and waveguides, on a single chip or substrate. The goal of integrated photonics is to miniaturize and consolidate optical elements in a manner similar to the integration of electronic components on a microchip in traditional integrated circuits. Key aspects of integrated photonics include: Miniaturization: Integrated photonics aims to...
    nanophotonics
    Nanophotonics is a branch of science and technology that explores the behavior of light on the nanometer scale, typically at dimensions smaller than the wavelength of light. It involves the study and manipulation of light using nanoscale structures and materials, often at dimensions comparable to or smaller than the wavelength of the light being manipulated. Aspects and applications of nanophotonics include: Nanoscale optical components: Nanophotonics involves the design and fabrication of...
    nonlinear optics
    Nonlinear optics is a branch of optics that studies the optical phenomena that occur when intense light interacts with a material and induces nonlinear responses. In contrast to linear optics, where the response of a material is directly proportional to the intensity of the incident light, nonlinear optics involves optical effects that are not linearly dependent on the input light intensity. These nonlinear effects become significant at high light intensities, such as those produced by...
    quantum
    The term quantum refers to the fundamental unit or discrete amount of a physical quantity involved in interactions at the atomic and subatomic scales. It originates from quantum theory, a branch of physics that emerged in the early 20th century to explain phenomena observed on very small scales, where classical physics fails to provide accurate explanations. In the context of quantum theory, several key concepts are associated with the term quantum: Quantum mechanics: This is the branch of...
    optoelectronics
    Optoelectronics is a branch of electronics that focuses on the study and application of devices and systems that use light and its interactions with different materials. The term "optoelectronics" is a combination of "optics" and "electronics," reflecting the interdisciplinary nature of this field. Optoelectronic devices convert electrical signals into optical signals or vice versa, making them crucial in various technologies. Some key components and applications of optoelectronics include: ...
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    Research & TechnologyeducationAmericasNational Institute of Standards and TechnologyNISTOpticsintegrated photonicsmicroresonatorsnanophotonicsnonlinear opticsMaterialssilicon photonicsquantumoptoelectronicssemiconductorsLasersnanoDisplaysLight Sourcesdiode lasersinfrared lightvisible lightCommunicationsmedicaloptical parametric oscillationgreen gap wavelength range

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.