Search
Menu
Excelitas Technologies Corp. - X-Cite Vitae LB 11/24

High-Throughput Imaging Links Microbial Metabolism With Cell Identity

Facebook X LinkedIn Email
ROBIN RILEY, CONTRIBUTOR

An imaging platform for investigating microbiomes in medical and environmental samples can perform high-throughput metabolism and identity analyses with single-cell resolution. Called SRS-FISH, or stimulated Raman scattering two-photon fluorescence in situ hybridization, the technique is the result of a collaborative effort among researchers at Boston University, the University of Vienna, and Aalborg University. The imaging speed of SRS-FISH is 10 to 100 ms per cell. Using SRS-FISH, the researchers detected metabolic responses of more than 30,000 individual cells to various mucosal...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: July 2022
    Glossary
    in situ
    In situ, from Latin meaning "in place," refers to a method or approach where measurements, observations, or experiments are conducted directly at the location of interest or within the natural environment where the phenomenon under investigation occurs. In-situ techniques allow researchers to study processes, properties, or conditions in their native or undisturbed state, without the need for sample extraction, manipulation, or relocation. Real-time monitoring: In-situ techniques enable...
    raman scattering
    Raman scattering, also known as the Raman effect or Raman spectroscopy, is a phenomenon in which light undergoes inelastic scattering when interacting with matter, such as molecules, crystals, or nanoparticles. Named after Indian physicist Sir C. V. Raman, who discovered it in 1928, Raman scattering provides valuable information about the vibrational and rotational modes of molecules and materials. Principle: When a photon interacts with a molecule, most of the scattered light retains...
    cell
    1. A single unit in a device for changing radiant energy to electrical energy or for controlling current flow in a circuit. 2. A single unit in a device whose resistance varies with radiant energy. 3. A single unit of a battery, primary or secondary, for converting chemical energy into electrical energy. 4. A simple unit of storage in a computer. 5. A limited region of space. 6. Part of a lens barrel holding one or more lenses.
    fluorescence
    Fluorescence is a type of luminescence, which is the emission of light by a substance that has absorbed light or other electromagnetic radiation. Specifically, fluorescence involves the absorption of light at one wavelength and the subsequent re-emission of light at a longer wavelength. The emitted light occurs almost instantaneously and ceases when the excitation light source is removed. Key characteristics of fluorescence include: Excitation and emission wavelengths: Fluorescent materials...
    Imagingin situMicroscopyRamanRaman scatteringraman scattering microscopyScattering MicroscopyCellfluorescencemultiphoton fluorescencefluorescence in situ hybridization (FISH)fluorescence in situ hybridizationSRSSRS-FISHJi-Xin ChengAmericasEuropeResearch & TechnologyeducationBiophotonicsBioScan

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.