Search
Menu
Teledyne DALSA - Linea HS2 11/24 LB

Deep Learning-Trained Imager Magnifies Subwavelength Objects

Facebook X LinkedIn Email
LOS ANGELES, June 27, 2024 — An optical imaging system from UCLA goes beyond the traditional diffraction limit to enable imaging at subwavelength resolution. The new imager will make direct imaging of phase objects with subwavelength resolution less challenging for bioimaging, sensing, material characterization, and other applications that frequently use phase imaging. The imager, developed in the lab of UCLA professor Aydogan Ozcan, enables subwavelength imaging of phase and amplitude objects. To enable the imager to recover high-frequency information corresponding to the subwavelength features of an object, the...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: June 2024
    Glossary
    deep learning
    Deep learning is a subset of machine learning that involves the use of artificial neural networks to model and solve complex problems. The term "deep" in deep learning refers to the use of deep neural networks, which are neural networks with multiple layers (deep architectures). These networks, often called deep neural networks or deep neural architectures, have the ability to automatically learn hierarchical representations of data. Key concepts and components of deep learning include: ...
    Research & TechnologyeducationAmericasUCLAImagingLight SourcesMaterialsOpticsdeep learningcamerasBiophotonicsindustrialdiffraction limitSensors & Detectorssubwavelength imagingphase imaging

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.