Search
Menu
Meadowlark Optics - Wave Plates 6/24 LB 2024

Bright Quantum Dot Record Set

Facebook X LinkedIn Email
CHAMPAIGN, Ill., Sept. 25, 2007 -- Enhanced fluorescence intensity has been demonstrated by a factor of up to 108 by placing quantum dots on a specially designed photonic crystal. Potential applications include high-brightness LEDs, optical switches and personalized, high-sensitivity biosensors. "We are using photonic crystals in a new way," said Brian Cunningham, a professor of electrical and computer engineering and a corresponding author of a study by researchers at the University of Illinois who demonstrated the results. "We tune them to the specific wavelength of a laser used to stimulate the quantum dots, which...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: September 2007
    Glossary
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    quantum dots
    A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
    BiophotonicsNews & Featuresphotonic crystalphotonicsqdotsquantum dotsSensors & DetectorsUniversity of IllinoisUniversity of Illinois at Urbana-Champaign

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.