Search
Menu
Spectrogon US - Optical Filters 2024 LB

X-rays Exceed 'Critical Angle'

Facebook X LinkedIn Email
UPTON, N.Y., Oct. 1, 2007 -- A new method uses refractive lenses to focus x-rays down to extremely small spots, a breakthrough important in the development of a new light-source facility that promises advances in nanoscience, energy, biology and materials research.

At Brookhaven National Laboratory’s National Synchrotron Light Source (NSLS), a team of scientists has exceeded a limit on the ability to focus “hard,” or high-energy, x-rays known as the “critical angle.”
Brookhaven.jpg
Members of the research team at Brookhaven National Lab's NSLS beamline X13B are (l-r) James Ablett, Aaron Stein, and Kenneth Evans-Lutterodt.
The critical angle is the maximum angle that light can be deflected, or bent, by a single surface. Imagine a beam of laser light traveling toward a glass lens. Depending on the characteristics of the lens material and the angle at which the beam is pointed, the light can be refracted, that is, transmitted through the lens but deflected. However, when this light approaches the lens at angles less than the critical angle, the beam does not pass through the lens but is instead reflected. This results in a maximum deflection angle for light that passes through the lens.

The maximum deflection angle determines the minimum spot size to which x-rays can be focused. This poses a problem for researchers who are using x-rays to study molecules, atoms, and advanced materials at the nanoscale – on the order of billionths of a meter. Such small subjects require tightly focused beams.

“One measure of the quality of an x-ray optic is how small a focused spot it can make,” said NSLS researcher Ken Evans-Lutterodt. “The problem is that nature does not allow a single lens to deflect the x-rays very much. This limits how small of a spot you can create, and this translates to some fuzziness in the image. To get a sharper image, you need a lens that’s more able to deflect the x-rays.”

In 2003, a trio of Brookhaven researchers -- Evans-Lutterodt, Aaron Stein, and James Ablett -- were the first to notice the critical angle limit while investigating the properties of a so-called kinoform lens for focusing hard x-rays. This efficient type of refractive lens is similar to those found in lighthouses. The research team proposed a solution to the critical angle problem of a compound kinoform lens, and both the problem and proposed solution were also suggested later by other researchers in the field.

Edmund Optics - Manufacturing Services 8/24 MR

In their current research, which is described online in the Sept. 28 edition of Physical Review Letters, the researchers implemented their idea by creating a compound lens from a series of four kinoform lenses placed one after the other. Using this setup at NSLS beamline X13B, they showed that the critical angle can be surpassed with hard x-rays, while still focusing like a single lens.

“Thanks to the excellent fabrication resources at Brookhaven’s Center for Functional Nanomaterials and at Alcatel-Lucent, we are able to fabricate the lenses to the precision required,” Stein said.

This is an important step for the National Synchrotron Light Source II (NSLS-II), an advanced synchrotron facility that will produce x-rays up to 10,000 times brighter than those generated by the current NSLS and could lead to advances such as alternative-energy technologies and new drugs for fighting disease. One of the major goals of the facility is to probe materials and molecules with just one-nanometer resolution – a capability needed to study the intricate mechanisms of chemical and biological systems.

“Without exceeding the critical angle, the refractive lens resolution would be limited to 24 nanometers or more,” Ablett said. “Even though in this experiment we just barely exceeded this limit, we’ve shown that it can be done. This is just the first step.”

Next, the researchers will measure the resolution their new lens system produces, and will continue to fabricate and test optics that push further beyond the critical angle, and closer to the one-nanometer benchmark. “We’ve broken the barrier, now there’s still more work to be done to get down to those small x-ray spots,” Evans-Lutterodt said. “Hopefully this will be one of the routes that NSLS-II and others will use.”

Natasha Bozovic, from San Jose State University, also collaborated on the research. Funding was provided by the Office of Basic Energy Sciences within the US Department of Energy’s Office of Science.

For more information, visit: www.bnl.gov

Published: October 2007
Glossary
critical angle
The least angle of incidence at which total internal reflection takes place. The angle of incidence in a denser medium, at an interface between the denser and less dense medium, at which the light is refracted along the interface. When the critical angle is exceeded, the light is totally reflected back into the denser medium. The critical angle varies with the indices of refraction of the two media with the relationship: where Ic is the critical angle; n´ the refractive index of...
kinoform
Lens which, by altering the phase, efficiently images through a holographic process.
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
nanometer
A unit of length in the metric system equal to 10-9 meters. It formerly was called a millimicron.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
synchrotron
A synchrotron is a type of particle accelerator that uses magnetic fields to steer charged particles, typically electrons or positrons, in a closed, circular or elliptical path. The name synchrotron refers to the synchronization of the accelerating electric field with the increasing particle velocity as they move in a circular path. Synchrotrons are powerful tools used in various scientific and industrial applications, particularly in the generation of intense beams of synchrotron radiation. ...
Aaron SteinBiophotonicsBrookhaven National Laboratorycritical angleEvans-LutterodtJames AblettkinoformlensesnanonanometerNews & FeaturesNSLSOpticsphotonicsrefractivesynchrotronx-raysX13B

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.