Search
Menu
Hamamatsu Corp. - Creating a Better Future LB 1-25

Self-Cleaning Solar Cells

Facebook X LinkedIn Email
BOSTON, Aug. 30, 2010 — Large-scale solar installations are most efficient in desert regions where the sun is the strongest. Unfortunately those regions are also clouded with dust that gets into, and onto, everything — including solar panels. Now, based on technology developed for space missions to Mars, scientists have discovered a self-cleaning coating that could keep dust off of solar installations the size of 25 to 50 football fields.


Researchers have developed technology for large-scale solar power installations to self-clean. (Image: US Air Force)

In a report at the 240th National Meeting of the American Chemical Society (ACS), they described how a self-cleaning coating on the surface of solar cells could increase the efficiency of producing electricity from sunlight and reduce maintenance costs for large-scale solar installations.

"We think our self-cleaning panels used in areas of high dust and particulate pollutant concentrations will highly benefit the systems' solar energy output," said study leader Malay K. Mazumder, PhD. "Our technology can be used in both small- and large-scale photovoltaic systems. To our knowledge, this is the only technology for automatic dust cleaning that doesn't require water or mechanical movement."

Mazumder, who is with Boston University, said the need for that technology is growing with the popularity of solar energy. Use of solar, or photovoltaic, panels increased by 50 percent from 2003 to 2008, and forecasts suggest a growth rate of at least 25 percent annually into the future. Fostering the growth, he said, is emphasis on alternative energy sources and society-wide concerns about sustainability (using resources today in ways that do not jeopardize the ability of future generations to meet their needs).

Large-scale solar installations already exist in the United States, Spain, Germany, the Middle East, Australia, and India. These installations usually are located in sun-drenched desert areas where dry weather and winds sweep dust into the air and deposit it onto the surface of solar panel. Just like grime on a household window, that dust reduces the amount of light that can enter the business part of the solar panel, decreasing the amount of electricity produced. Clean water tends to be scarce in these areas, making it expensive to clean the solar panels.

Meadowlark Optics - Wave Plates 6/24 MR 2024

"A dust layer of one-seventh of an ounce per square yard decreases solar power conversion by 40 percent," he said. "In Arizona, dust is deposited each month at about 4 times that amount. Deposition rates are even higher in the Middle East, Australia, and India."

Working with NASA, Mazumder and colleagues initially developed the self-cleaning solar panel technology for use in lunar and Mars missions. "Mars of course is a dusty and dry environment and solar panels powering rovers and future manned and robotic missions must not succumb to dust deposition. But neither should the solar panels here on Earth," said Mazumder.

The self-cleaning technology involves deposition of a transparent, electrically sensitive material deposited on glass or a transparent plastic sheet covering the panels. Sensors monitor dust levels on the surface of the panel and energize the material when dust concentration reaches a critical level. The electric charge sends a dust-repelling wave cascading over the surface of the material, lifting away the dust and transporting it off of the screen's edges.

Mazumder said that within two minutes, the process removes about 90 percent of the dust deposited on a solar panel and requires only a small amount of the electricity generated by the panel for cleaning operations.

The current market size for solar panels is about $24 billion, Mazumder said. "Less than 0.04 percent of global energy production is derived from solar panels, but if only four percent of the world's deserts were dedicated to solar power harvesting, our energy needs could be completely met worldwide. This self-cleaning technology can play an important role."

For more information, visit:  www.bu.edu 




Published: August 2010
240th National Meeting of the ACSAmericasAsia-Pacificautomatic dust cleaningBoston UniversityenergyEuropegreen photonicshigh dust concentrationsLight SourcesMalay K. MazumderMarsMassachusettsMiddle EastNASAphotovoltaicspower harvestingResearch & TechnologySelf-cleaning solar cellsself-cleaning technologySensors & Detectorssolar cellssolar installations

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.