Search
Menu
Lumibird - Laser Diodes & Components 1-25 LB

SERS in a Capillary Could Aid Biochemical Sensing on the Lab-on-a-Chip Scale

Facebook X LinkedIn Email
Optical ring resonator augments Raman signal.

Lynn M. Savage

Raman spectroscopy is useful for applications where high-specificity biological or chemical sensing is required. Unfortunately, sensitive detection using Raman-based sensors has proved more difficult, especially at the scale of lab-on-a-chip devices, because analytes passing through microchannels provide Raman signals that are very small. However, exploiting the effects of surface-enhanced Raman scattering (SERS), in which nanometer-scale metal particles interact with photons from a laser beam, can help boost sensitivity in microfluidic systems.

TWsers_partA_B.jpg

A schematic illustrates the design of a liquid-core optical ring resonator (LCORR) through which passes an analyte infused with silver particles (a). A photograph shows the optical fiber probe bringing light into the capillary wall (b). Radiative scattering sends some of the light a short distance along the longitudinal axis of the capillary, but most of the light resonates around the circumference of the tube via total internal reflection. Reprinted with permission of Optics Express.


Researchers have developed methods to integrate SERS techniques with microfluidics, achieving detection limits of about 103 to 106 pM. But now a group from the University of Missouri-Columbia, led by assistant professor Xudong Fan, has created a technique that achieves a detection limit of 400 pM.

The investigators used a glass capillary ∼125 μm in diameter to form a liquid-core optical ring resonator, bringing a tapered 1- to 2-μm-diameter optical fiber into contact with the capillary. Through the fiber, they shone the light from a 785-nm distributed feedback laser made by Toptica Photonics AG of Gräfelfing, Germany. After the beam enters the outer wall of the capillary, it travels around the capillary several hundred times, resonating between the inner and outer surfaces via total internal reflection.

CMC Electronics - Advanced Near-Infrared 2024 MR

Through the capillary, the investigators passed the dye rhodamine 6G, into which they had added silver nanoparticles. As the silver-infused analyte passed the cross section of the capillary that was undergoing resonance, the particles closest to the inner wall entered an intense evanescent field emanating from the light traversing the capillary walls. A second fiber collected the resulting Raman signal and sent it to a spectrometer made by Jobin Yvon (now Horiba Jobin Yvon of Edison, N.J.). The average Raman enhancement achieved was 107.

According to Fan, using silver made optimizing the system easy, and not much of the metal is required. Other methods of introducing silver for signal enhancement, such as layering silver nanostructures onto the inner wall, would be more difficult and, ultimately, self-defeating. “Too much silver can completely destroy the ability of the ring resonator to resonate,” he said.

The light in the ring resonator had about 25 times more power than within the input fiber, enabling the evanescent field to penetrate about 100 nm into the sample. The investigators subsequently etched away the inner wall of the capillary, repeating the experiment with wall thicknesses of 3.3, 2.85 and 2.15 μm. As the thickness shrank, the depth of penetration by the evanescent field increased, further enhancing the Raman signal.

Fan said that etching might introduce surface roughness, which in turn could deteriorate the system’s effectiveness. “The best way is to fabricate the thin-walled capillary with direct pulling from a draw tower, like the way optical fiber is made,” he said.

The group is working to enhance the system’s detection limit by increasing the light intensity, optimizing the wavelength used, improving the connection between the input fiber optic and the capillary, and developing a technique to better attract the silver particles to the inner wall. 

Optics Express, Dec. 10, 2007, pp. 17433-17442.

Published: February 2008
Glossary
chemical sensing
Chemical sensing refers to the detection and measurement of specific chemical compounds or substances in various environments or samples. It involves the use of sensors or analytical techniques to detect, identify, and quantify the presence of target molecules based on their chemical properties. Chemical sensing plays a crucial role in a wide range of fields, including environmental monitoring, industrial process control, biomedical diagnostics, food safety, and security. Principles of...
raman spectroscopy
Raman spectroscopy is a technique used in analytical chemistry and physics to study vibrational, rotational, and other low-frequency modes in a system. Named after the Indian physicist Sir C.V. Raman who discovered the phenomenon in 1928, Raman spectroscopy provides information about molecular vibrations by measuring the inelastic scattering of monochromatic light. Here is a breakdown of the process: Incident light: A monochromatic (single wavelength) light, usually from a laser, is...
chemical sensingRaman spectroscopyResearch & TechnologySensors & DetectorsspectroscopyTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.