Search
Menu
Bristol Instruments, Inc. - 872 Series LWM 10/24 LB

THz Laser Tuning Detects Substances at Airports – and Elsewhere

Facebook X LinkedIn Email
By Joerg Schwartz

Researchers from MIT in Cambridge have demonstrated an important feature of tunability by using a novel technique that also is potentially relevant to other fields of laser technology. Their work was published in a recent issue of Nature Photonics. Electromagnetic waves in the 1- to 10-THz region – i.e., with wavelengths between 30 and 300 – µm – have lived in the shadows because they fall into the gap between microwaves generated and manipulated by solid-state electronic devices and the higher frequencies covered by infrared photonics. This is unfortunate because terahertz waves not...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: January 2010
    Glossary
    gallium nitride
    Gallium nitride (GaN) is a compound made up of gallium (Ga) and nitrogen (N). It is a wide-bandgap semiconductor material that exhibits unique electrical and optical properties. Gallium nitride is widely used in the production of various electronic and optoelectronic devices, including light-emitting diodes (LEDs), laser diodes, power electronics, and high-frequency communication devices. Key points about gallium nitride (GaN): Chemical composition: Gallium nitride is a binary compound...
    infrared
    Infrared (IR) refers to the region of the electromagnetic spectrum with wavelengths longer than those of visible light, but shorter than those of microwaves. The infrared spectrum spans wavelengths roughly between 700 nanometers (nm) and 1 millimeter (mm). It is divided into three main subcategories: Near-infrared (NIR): Wavelengths from approximately 700 nm to 1.4 micrometers (µm). Near-infrared light is often used in telecommunications, as well as in various imaging and sensing...
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    quantum cascade laser
    A quantum cascade laser (QCL) is a type of semiconductor laser that operates based on the principles of quantum mechanics. It is a versatile and powerful device used for emitting coherent light in the mid-infrared to terahertz range of the electromagnetic spectrum. Quantum cascade lasers were first proposed by Federico Capasso, Jerome Faist, Deborah Sivco, Carlo Sirtori, Albert Hutchinson, and Alfred Cho in 1994. Key features and principles of quantum cascade lasers: Quantum cascade...
    quantum well
    A quantum well is a structure in quantum mechanics that confines particles, such as electrons or holes, in one spatial dimension. This confinement leads to quantized energy levels, creating a potential well in which the particles are restricted to move. In semiconductor physics and device engineering, quantum wells are commonly used to create electronic or optical devices. These structures are typically thin layers (often on the order of nanometers) sandwiched between layers of a different...
    terahertz
    Terahertz (THz) refers to a unit of frequency in the electromagnetic spectrum, denoting waves with frequencies between 0.1 and 10 terahertz. One terahertz is equivalent to one trillion hertz, or cycles per second. The terahertz frequency range falls between the microwave and infrared regions of the electromagnetic spectrum. Key points about terahertz include: Frequency range: The terahertz range spans from approximately 0.1 terahertz (100 gigahertz) to 10 terahertz. This corresponds to...
    AlGaAsBell LabsdefenseDetroitevanescent fieldGaAsgallium nitrideinfraredJerome FaistJörg Schwartzliquid nitrogenmaterials detectionmedical imagingmicrowavesMITmolecular rotationpharmacyphotonicsQCLQing Huquantum cascade laserquantum wellResearch & Technologysecurityspectroscopic terahertz fingerprintsubbandssuperlatticeterahertzterahertz wavesTHztunabilityWeb Exclusiveswire laserLasers

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.