Search
Menu
Sheetak -  Cooling at your Fingertip 11/24 LB

'Spinplasmonics' Field Created

Facebook X LinkedIn Email
EDMONTON, Alberta, May 31, 2007 -- By combining two nanotechnology fields -- spintronics and plasmonics -- researchers have found a novel way to control the quantum state of an electron's spin and created a new technology, "spinplasmonics." A University of Alberta research team lead by Abdulhakem Elezzabi combined the two fields and said that they believe spinplasmonics may be used to create incredibly efficient electron spin-based photonic devices, which in turn may be used to build, for example, computers with extraordinary capacities. "We've only just begun to scratch the surface of this field, but we believe we...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: May 2007
    Glossary
    electron
    A charged elementary particle of an atom; the term is most commonly used in reference to the negatively charged particle called a negatron. Its mass at rest is me = 9.109558 x 10-31 kg, its charge is 1.6021917 x 10-19 C, and its spin quantum number is 1/2. Its positive counterpart is called a positron, and possesses the same characteristics, except for the reversal of the charge.
    electronics
    That branch of science involved in the study and utilization of the motion, emissions and behaviors of currents of electrical energy flowing through gases, vacuums, semiconductors and conductors, not to be confused with electrics, which deals primarily with the conduction of large currents of electricity through metals.
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    plasmonics
    Plasmonics is a field of science and technology that focuses on the interaction between electromagnetic radiation and free electrons in a metal or semiconductor at the nanoscale. Specifically, plasmonics deals with the collective oscillations of these free electrons, known as surface plasmons, which can confine and manipulate light on the nanometer scale. Surface plasmons are formed when incident photons couple with the conduction electrons at the interface between a metal or semiconductor...
    quantum
    The term quantum refers to the fundamental unit or discrete amount of a physical quantity involved in interactions at the atomic and subatomic scales. It originates from quantum theory, a branch of physics that emerged in the early 20th century to explain phenomena observed on very small scales, where classical physics fails to provide accurate explanations. In the context of quantum theory, several key concepts are associated with the term quantum: Quantum mechanics: This is the branch of...
    Abdulhakem ElezzabiAlbertaBasic ScienceBiophotonicsbiosensorcircuitcomputerelectromagneticelectronelectronicsElezzabinanoNews & Featuresphotonicphotonicsplasmonicsquantumsemiconductorssiliconspinplasmonicspintronic devicespintronics

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.