Search
Menu
AdTech Ceramics - Ceramic Packages 1-24 LB

Raman Scattering Helps Ensure Safety of Stem Cell Therapies

Facebook X LinkedIn Email
A research team at Rutgers University has developed a biosensor technology that could benefit applications for the treatment of neurological disorders through stem cell therapy. The hybrid biosensing platform consists of an array of ultrathin graphene layers and gold nanostructures. This platform has been combined with Raman spectroscopy to detect genes and characterize different kinds of stem cells with greater reliability, selectivity, and sensitivity. Because stem cells can become many different types of cells, stem cell therapy shows promise for regenerative treatment of...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: November 2019
    Glossary
    graphene
    Graphene is a two-dimensional allotrope of carbon consisting of a single layer of carbon atoms arranged in a hexagonal lattice pattern. It is the basic building block of other carbon-based materials such as graphite, carbon nanotubes, and fullerenes (e.g., buckyballs). Graphene has garnered significant attention due to its remarkable properties, making it one of the most studied materials in the field of nanotechnology. Key properties of graphene include: Two-dimensional structure:...
    plasmonics
    Plasmonics is a field of science and technology that focuses on the interaction between electromagnetic radiation and free electrons in a metal or semiconductor at the nanoscale. Specifically, plasmonics deals with the collective oscillations of these free electrons, known as surface plasmons, which can confine and manipulate light on the nanometer scale. Surface plasmons are formed when incident photons couple with the conduction electrons at the interface between a metal or semiconductor...
    raman spectroscopy
    Raman spectroscopy is a technique used in analytical chemistry and physics to study vibrational, rotational, and other low-frequency modes in a system. Named after the Indian physicist Sir C.V. Raman who discovered the phenomenon in 1928, Raman spectroscopy provides information about molecular vibrations by measuring the inelastic scattering of monochromatic light. Here is a breakdown of the process: Incident light: A monochromatic (single wavelength) light, usually from a laser, is...
    surface-enhanced raman scattering
    Surface-enhanced Raman scattering (SERS) is a powerful analytical technique that enhances the Raman scattering signal of molecules adsorbed on or near certain nanostructured surfaces. Raman scattering is a process in which light interacts with molecular vibrations, providing a fingerprint-like spectrum that can be used to identify and characterize chemical compounds. SERS significantly amplifies the Raman signal, making it more sensitive and allowing for the detection of molecules at very low...
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    Research & TechnologyeducationAmericasRutgers UniversityLight SourcesMaterialsgraphenegold nanoarrayplasmonicsspectroscopyRaman spectroscopysurface-enhanced Raman scatteringnanomaterialsnanoBiophotonicsstem cell therapybiosensorsSensors & Detectorsmedicalneurological diseaseBioScan

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.