Search
Menu
Spectrogon US - Optical Filters 2024 LB

Quantum Metasurfaces Manipulate Free Photons

Facebook X LinkedIn Email
LOS ALAMOS, N.M., Aug. 3, 2021 — A team at Los Alamos National Laboratory proposes that modulated quantum metasurfaces can control all properties of photonic qubits. According to the team, such a breakthrough would affect the fields of quantum information, communications, sensing, imaging, and energy and momentum harvesting. “People have studied classical metasurfaces for a long time,” said Diego Dalvit of the Physics of Condensed Matter and Complex Systems group in the laboratory’s Theoretical Division. “But we came up with this new idea, which was to modulate in time and space the optical...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: August 2021
    Glossary
    quantum
    The term quantum refers to the fundamental unit or discrete amount of a physical quantity involved in interactions at the atomic and subatomic scales. It originates from quantum theory, a branch of physics that emerged in the early 20th century to explain phenomena observed on very small scales, where classical physics fails to provide accurate explanations. In the context of quantum theory, several key concepts are associated with the term quantum: Quantum mechanics: This is the branch of...
    photon
    A quantum of electromagnetic energy of a single mode; i.e., a single wavelength, direction and polarization. As a unit of energy, each photon equals hn, h being Planck's constant and n, the frequency of the propagating electromagnetic wave. The momentum of the photon in the direction of propagation is hn/c, c being the speed of light.
    qubit
    A qubit, short for quantum bit, is the fundamental unit of information in quantum computing and quantum information processing. Unlike classical bits, which can exist in one of two states (0 or 1), qubits can exist in multiple states simultaneously, thanks to a quantum property known as superposition. This unique feature enables quantum computers to perform certain types of calculations much more efficiently than classical computers. Key characteristics of qubits include: Superposition: A...
    Research & TechnologyquantumLasersFiber Optics & CommunicationsphotonOpticsmetasurfacequantum lightentangledentangled LightEntangled photonssuperpositionsuperpositionssuperposition stateLos AlamosLos Alamos National LabLos Alamos National Laboratoryquantum communicationPhysical Review LettersqubitqubitsAmericas

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.