Search
Menu
Sheetak -  Cooling at your Fingertip 11/24 LB

Plasmon Findings Could Pave-Way for Carbon-Based NIR Optoelectronic Devices

Facebook X LinkedIn Email
Researchers’ observation of gate-controlled quantum plasmons in aligned carbon nanotubes could pave the way for the development of carbon-based NIR optoelectronic devices and enable researchers to study the collective dynamic response of interacting electrons in one dimension. Rice University researchers achieved tight alignment of carbon nanotubes in wafer-sized films. These films caught the attention of a team at Tokyo Metropolitan University (TMU) that had developed a gating technique for controlling the density of electrons in nanotube film. “The gating technique...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: March 2018
    Glossary
    optoelectronics
    Optoelectronics is a branch of electronics that focuses on the study and application of devices and systems that use light and its interactions with different materials. The term "optoelectronics" is a combination of "optics" and "electronics," reflecting the interdisciplinary nature of this field. Optoelectronic devices convert electrical signals into optical signals or vice versa, making them crucial in various technologies. Some key components and applications of optoelectronics include: ...
    nanophotonics
    Nanophotonics is a branch of science and technology that explores the behavior of light on the nanometer scale, typically at dimensions smaller than the wavelength of light. It involves the study and manipulation of light using nanoscale structures and materials, often at dimensions comparable to or smaller than the wavelength of the light being manipulated. Aspects and applications of nanophotonics include: Nanoscale optical components: Nanophotonics involves the design and fabrication of...
    plasmonics
    Plasmonics is a field of science and technology that focuses on the interaction between electromagnetic radiation and free electrons in a metal or semiconductor at the nanoscale. Specifically, plasmonics deals with the collective oscillations of these free electrons, known as surface plasmons, which can confine and manipulate light on the nanometer scale. Surface plasmons are formed when incident photons couple with the conduction electrons at the interface between a metal or semiconductor...
    quantum cascade laser
    A quantum cascade laser (QCL) is a type of semiconductor laser that operates based on the principles of quantum mechanics. It is a versatile and powerful device used for emitting coherent light in the mid-infrared to terahertz range of the electromagnetic spectrum. Quantum cascade lasers were first proposed by Federico Capasso, Jerome Faist, Deborah Sivco, Carlo Sirtori, Albert Hutchinson, and Alfred Cho in 1994. Key features and principles of quantum cascade lasers: Quantum cascade...
    Research & TechnologyeducationAsia-PacificAmericasLasersMaterialsoptoelectronicsquantum wellsnanophotonicsplasmonicscarbon nanotubesquantum cascade laserLuttinger liquidsnir laserquantum effectTech Pulse

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.