Search
Menu
Meadowlark Optics - Wave Plates 6/24 LB 2024

Photonic Crystals Imitate Gravitational Effects on Light

Facebook X LinkedIn Email
A group of researchers has replicated the way that light would behave if it were subject to gravity, supporting a recent scientific theory about pseudogravity. According to the theory, pseudogravity, a phenomenon replicating the effects of gravity, can be achieved by deforming crystals in the lower frequency region. Photonic crystals have been shown to bend light as though it were under the influence of gravity. Courtesy of Tohoku University. Researchers from Tohoku University, in collaboration with other institutions including Osaka University, set out to determine whether...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: October 2023
    Glossary
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    photonic crystals
    Photonic crystals are artificial structures or materials designed to manipulate and control the flow of light in a manner analogous to how semiconductors control the flow of electrons. Photonic crystals are often engineered to have periodic variations in their refractive index, leading to bandgaps that prevent certain wavelengths of light from propagating through the material. These bandgaps are similar in principle to electronic bandgaps in semiconductors. Here are some key points about...
    terahertz
    Terahertz (THz) refers to a unit of frequency in the electromagnetic spectrum, denoting waves with frequencies between 0.1 and 10 terahertz. One terahertz is equivalent to one trillion hertz, or cycles per second. The terahertz frequency range falls between the microwave and infrared regions of the electromagnetic spectrum. Key points about terahertz include: Frequency range: The terahertz range spans from approximately 0.1 terahertz (100 gigahertz) to 10 terahertz. This corresponds to...
    Research & TechnologyeducationAsia-PacificLight SourcesMaterialsOpticsCommunicationsnanophotonic crystalsterahertzpseudogravitydistorted photonic crystalslight-matter interactionselectromagnetic waves6G communicationsTechnology News

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.