Search
Menu
Excelitas Technologies Corp. - X-Cite Vitae LB 11/24

Optofluidic Device Tests for Blood Disorders at Point of Care

Facebook X LinkedIn Email
HARBIN, China, Jan. 25, 2024 — Abnormalities in white blood cell count are indicative of a blood disorder. Measuring these abnormalities is imperative. However, the use of flow cytometry and other conventional methods to assess white blood cell concentration is confined to hospital and laboratory settings due to the bulkiness and complexity of the equipment. Access to such equipment in remote areas presents challenges concerning early diagnosis for patients. Portable blood cell analyzers could alleviate these challenges and enable an earlier start on treatment. Researchers at Harbin Institute of Technology,...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: January 2024
    Glossary
    flow cytometry
    Flow cytometry is a powerful technique used in biology and medicine for the quantitative analysis of the physical and chemical characteristics of cells and particles suspended in a fluid. The method allows for the rapid measurement of multiple parameters simultaneously on a cell-by-cell basis. It is widely used in various fields, including immunology, microbiology, hematology, and cancer research. Here are the key components and features of flow cytometry: Sample preparation: Cells or...
    optoelectronics
    Optoelectronics is a branch of electronics that focuses on the study and application of devices and systems that use light and its interactions with different materials. The term "optoelectronics" is a combination of "optics" and "electronics," reflecting the interdisciplinary nature of this field. Optoelectronic devices convert electrical signals into optical signals or vice versa, making them crucial in various technologies. Some key components and applications of optoelectronics include: ...
    astronomy
    The scientific observation of celestial radiation that has reached the vicinity of Earth, and the interpretation of these observations to determine the characteristics of the extraterrestrial bodies and phenomena that have emitted the radiation.
    optofluidics
    Optofluidics is an interdisciplinary field that combines principles from optics and fluidics to create devices and systems that integrate the manipulation of light and fluids. This field focuses on the interaction between light and fluidic materials, allowing for the development of innovative technologies with applications in areas such as sensing, imaging, and biotechnology. Key aspects of optofluidics include: Integration of optics and fluidics: Optofluidic devices are designed to...
    microfluidics
    Microfluidics is a multidisciplinary field that involves the manipulation and control of very small fluid volumes, typically in the microliter (10-6 liters) to picoliter (10-12 liters) range, within channels or devices with dimensions on the microscale. It integrates principles from physics, chemistry, engineering, and biotechnology to design and fabricate systems that handle and analyze fluids at the micro level. Key features and aspects of microfluidics include: Miniaturization:...
    fluorescence microscopy
    Fluorescence microscopy is a specialized optical imaging technique used in biology, chemistry, and materials science to visualize and study specimens that exhibit fluorescence. Fluorescence is the phenomenon where a substance absorbs light at one wavelength and emits light at a longer wavelength. In fluorescence microscopy, fluorescent dyes or proteins are used to label specific structures or molecules within a sample. The basic principles of fluorescence microscopy involve illuminating the...
    deep learning
    Deep learning is a subset of machine learning that involves the use of artificial neural networks to model and solve complex problems. The term "deep" in deep learning refers to the use of deep neural networks, which are neural networks with multiple layers (deep architectures). These networks, often called deep neural networks or deep neural architectures, have the ability to automatically learn hierarchical representations of data. Key concepts and components of deep learning include: ...
    Research & TechnologyeducationAsia-PacificHarbin Institute of Technologyflow cytometryImagingOpticsoptoelectronicsTest & MeasurementastronomyBiophotonicscancermedicalMicroscopyOptofluidicsmicrofluidicsfluorescence microscopywhite blood cell countpoint-of-care devicesSensors & Detectorsdeep learningportable optofluidic hematology analyzer

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.