Search
Menu
Opto Diode Corp. - Opto Diode 10-24 LB

Medicine and the Life Sciences

Facebook X LinkedIn Email
While it’s early days for integrated photonics in medicine and the life sciences, its impact promises a health care revolution by bringing early diagnosis and point-of-care monitoring to the masses.

MARIE FREEBODY, CONTRIBUTING EDITOR, [email protected]

Imagine testing for a host of diseases and conditions in a single sample of blood, saliva, urine or even a few tear drops. Cancers, heart conditions, viruses, food allergies and sepsis are just some of the tests that could be carried out using next-generation lab-on-a-chip concepts that are being explored and patented by today’s top researchers. Such disposable chips could be loaded with the sample and then quickly analyzed using a computer, tablet or even a smartphone for fast diagnostic testing and simple disease monitoring and management. It’s not just health care...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: November 2016
    Glossary
    lab-on-a-chip
    A lab-on-a-chip (LOC) is a miniaturized device that integrates various laboratory functions and capabilities onto a single, compact chip. Also known as microfluidic devices, lab-on-a-chip systems are designed to perform a variety of tasks traditionally carried out in conventional laboratories, but on a much smaller scale. These devices use microfabrication techniques to create channels, chambers, and other structures that facilitate the manipulation of fluids, samples, and reactions at the...
    lidar
    Lidar, short for light detection and ranging, is a remote sensing technology that uses laser light to measure distances and generate precise, three-dimensional information about the shape and characteristics of objects and surfaces. Lidar systems typically consist of a laser scanner, a GPS receiver, and an inertial measurement unit (IMU), all integrated into a single system. Here is how lidar works: Laser emission: A laser emits laser pulses, often in the form of rapid and repetitive laser...
    FiltersLaserslensesmirrorsOpticsSensors & DetectorsBiophotonicsMarie FreebodyICN2lab-on-a-chipOCTLioniX InternationalTriPleX chipsPICphotonic integrated circuitsRaman/fluorescence spectroscopyCMOS image sensors Bimodal Waveguide interferometerlidaroptical phased arraysFeatures

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.