ON DEMAND: See how real-time data processing, advanced SWIR and UV imaging, and on-chip spectral advancements are shaping the future of hyperspectral imaging!
Register
Sign In
Suppliers
Products
Categories
Handbook
Dictionary
Careers
Resources
Photonics Spectra
BioPhotonics
Vision Spectra
Virtual Events & Summits
Educational Institutions
Add/Update Your Listing
Exhibitor Listing Portal
Become an Exhibitor
Buyers' Guide Print Edition
Marketplace Help
Subscribe
Advertise
Suppliers
Products
Categories
Handbook
Dictionary
Careers
Resources
Photonics Spectra
BioPhotonics
Vision Spectra
Virtual Events & Summits
Educational Institutions
Add/Update Your Listing
Exhibitor Listing Portal
Become an Exhibitor
Buyers' Guide Print Edition
Marketplace Help
Register
Sign In
Photonics Dictionary
lab-on-a-chip
A lab-on-a-chip (LOC) is a miniaturized device that integrates various laboratory functions and capabilities onto a single, compact chip. Also known as microfluidic devices, lab-on-a-chip systems are designed to perform a variety of tasks traditionally carried out in conventional laboratories, but on a much smaller scale. These devices use microfabrication techniques to create channels, chambers, and other structures that facilitate the manipulation of fluids, samples, and reactions at the microscale.
Key features and characteristics of lab-on-a-chip devices include:
Miniaturization:
The primary feature of lab-on-a-chip technology is the miniaturization of traditional laboratory functions. The small size allows for reduced sample volumes, faster reaction times, and increased sensitivity.
Microfluidics:
Lab-on-a-chip devices leverage microfluidic principles to control and manipulate small volumes of fluids (typically in the range of microliters to nanoliters) through channels and chambers. This enables precise control of reactions and analyses.
Integration:
Multiple laboratory functions, such as sample preparation, mixing, separation, and detection, can be integrated onto a single chip. This integration simplifies workflows, reduces the need for manual interventions, and enhances the overall efficiency of the analytical process.
Applications:
Biomedical diagnostics:
Lab-on-a-chip devices are widely used for medical diagnostics, offering rapid and point-of-care testing for diseases, pathogens, and biomarkers.
Chemical analysis:
They are employed for chemical analyses, including environmental monitoring, food safety testing, and pharmaceutical research.
DNA analysis:
Lab-on-a-chip systems are utilized for DNA sequencing, polymerase chain reaction (PCR), and other molecular biology applications.
Material selection:
Lab-on-a-chip devices are often made from materials like glass, silicon, or polymers. The choice of materials depends on the specific application requirements, compatibility with biological samples, and manufacturing considerations.
Sensors and detectors:
Lab-on-a-chip devices incorporate sensors and detectors, such as optical sensors, electrochemical sensors, or fluorescence detectors, to monitor and analyze reactions and samples.
Point-of-care testing:
The portability and rapid analysis capabilities of lab-on-a-chip devices make them suitable for point-of-care testing, bringing diagnostics closer to the patient or field settings.
High-throughput screening:
Despite their small size, lab-on-a-chip devices can be designed for high-throughput screening, allowing for the parallel analysis of multiple samples.
Lab-on-a-chip technology continues to advance, offering innovative solutions for various scientific and medical applications. Its potential impact includes improved accessibility to diagnostics, reduced costs, and enhanced capabilities in fields such as personalized medicine, environmental monitoring, and biomedical research.
See Also
Related Articles
BioPhotonics.com Dec 2024
Microscopy Method Supports 3D, Multitargeted Cell Imaging at Nanoscale
BioPhotonics Nov/Dec 2023
Imec Spinout Axithra Raises $10M for Chip-based Raman Tech
BioPhotonics Jul/Aug 2023
Malley Richardson Awarded 2023 Teddi C. Laurin Scholarship for Research in Optofluidics
Popular Articles
Diffraction Gratings: Selection Guidelines
What Is Photonics?
Fiber Lasers: Continuing to Power Growth
Scatter and BSDF Measurements: Theory and Practice
Detectors: Options for Low-Light Applications
Explore Our Content
News
Features
Latest Products
Webinars
White Papers
All Things Photonics Podcast
Photonics Spectra
Now
Videos
Our Summits & Conferences
Industry Events
Bookstore
Join Our Community
Subscribe
Advertise
Become a member
Sign in
Contribute a Feature
Suggest a Webinar
Submit a Press Release
Mobile Apps
About Us
Our Company
Our Publications
Contact Us
Career Opportunities
Teddi C. Laurin Scholarship
Terms & Conditions
Privacy Policy
California Consumer Privacy Act (CCPA)
©2025 Photonics Media
100 West St.
Pittsfield, MA, 01201 USA
[email protected]
Requesting information about:
*
First Name:
*
Last Name:
*
Email Address:
*
Company:
*
Country:
Please select your country
Afghanistan
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua and Barbuda
Argentina
Armenia
Aruba
Ascension Island
Australia
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
Brunei Darussalam
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Cape Verde
Cayman Islands
Central African Republic
Chad
Chile
China
Colombia
Comoros
Congo
Cook Islands
Costa Rica
Croatia
Cuba
Curacao
Cyprus
Czech Republic
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
France
French Guiana
French Polynesia
Gabon
Gambia
Gaza
Georgia
Germany
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hong Kong
Hungary
Iceland
India
Indonesia
Iran
Iraq
Ireland
Isle of Man
Israel
Italy
Ivory Coast
Jamaica
Japan
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mexico
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
Netherlands
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
North Macedonia
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestine
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Poland
Portugal
Puerto Rico
Qatar
Reunion
Romania
Russia
Rwanda
Saint Helena
Saint Kitts and Nevis
Saint Lucia
Saint Vincent and the Grenadines
Samoa
San Marino
Sao Tome and Principe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Singapore
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Korea
South Sudan
Spain
Sri Lanka
Sudan
Suriname
Sweden
Switzerland
Syria
Taiwan
Tajikistan
Tanzania
Thailand
Timor-Leste
Togo
Tonga
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Turks and Caicos
Tuvalu
Uganda
Ukraine
United Arab Emirates
United Kingdom
United States
Uruguay
Uzbekistan
Vanuatu
Vatican City State
Venezuela
Vietnam
Virgin Islands - British
Virgin Islands - U.S.
Yemen
Zambia
Zimbabwe
Message:
When you click "Send Request", we will record and send your personal contact information to the supplier by email so they may respond directly. You also agree that Photonics Media may contact you with information related to this inquiry, and that you have read and accept our
Privacy Policy
and
Terms and Conditions of Use
.
* Required
We use cookies to improve user experience and analyze our website traffic as stated in our
Privacy Policy
. By using this website, you agree to the use of
cookies
unless you have disabled them.