Search
Menu
LightPath Technologies -  Germanium Alternative1-25 LB

Light Links Graphene, Gallium

Facebook X LinkedIn Email
BRAUNSCHWEIG, Germany, Sept. 18, 2009 – Using a light optical microscope, Physikalisch-Technische Bundesanstalt (PTB) scientists have succeeded in making graphene visible on gallium arsenide. Previously it has been possible only on silicon oxide. Now that they are able to view the graphene layer, which is thinner than one-thousandth of a light wavelength, the researchers want to measure the electrical properties of their new material combination. Graphene and gallium arsenide are considered top candidates for the future of electronics. Graphene is extremely thin, and its electronic properties are ideal because its electrons...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: September 2009
    Glossary
    gallium arsenide
    Gallium arsenide (GaAs) is a compound semiconductor material composed of gallium (Ga) and arsenic (As). It belongs to the III-V group of semiconductors and has a zincblende crystal structure. GaAs is widely used in various electronic and optoelectronic devices due to its unique properties. Direct bandgap: GaAs has a direct bandgap, which allows for efficient absorption and emission of photons. This property makes it suitable for optoelectronic applications such as light-emitting diodes...
    graphene
    Graphene is a two-dimensional allotrope of carbon consisting of a single layer of carbon atoms arranged in a hexagonal lattice pattern. It is the basic building block of other carbon-based materials such as graphite, carbon nanotubes, and fullerenes (e.g., buckyballs). Graphene has garnered significant attention due to its remarkable properties, making it one of the most studied materials in the field of nanotechnology. Key properties of graphene include: Two-dimensional structure:...
    light
    Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
    optoelectronics
    Optoelectronics is a branch of electronics that focuses on the study and application of devices and systems that use light and its interactions with different materials. The term "optoelectronics" is a combination of "optics" and "electronics," reflecting the interdisciplinary nature of this field. Optoelectronic devices convert electrical signals into optical signals or vice versa, making them crucial in various technologies. Some key components and applications of optoelectronics include: ...
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    aluminium arsenideantireflective layerBasic Scienceelectronic propertiesGaAs/AlAs crystal atom layergallium arsenidegraphenegraphene atomic layerindustriallightLight Optical Microscopelight wavelengthMicroscopyNews & Featuresoptical interference filtersoptoelectronicsphotonicsphotonics.comPhysikalisch-Technische BundesanstaltResearch & Technologysemiconductorsvisible light

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.