Search
Menu
AdTech Ceramics - Ceramic Packages 1-24 LB

Lasers Spin Nanotube Yarn

Facebook X LinkedIn Email
NEWPORT NEWS, Va., Dec. 3, 2009 – Lasers now have been used to create the first practical macroscopic yarns from boron nitride fibers, opening the door for an array of applications from solar cells to stronger body armor. Researchers at NASA’s Langley Research Center, the Thomas Jefferson National Accelerator Facility and the National Institute of Aerospace have created a technique to synthesize high-quality boron-nitride nanotubes (BNNTs) that are highly crystalline and that have a small diameter. They also structurally contain few walls and are very long. Boron nitride is the white material found in clown makeup and...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: December 2009
    Glossary
    beam
    1. A bundle of light rays that may be parallel, converging or diverging. 2. A concentrated, unidirectional stream of particles. 3. A concentrated, unidirectional flow of electromagnetic waves.
    free-electron laser
    A free-electron laser (FEL) is a type of laser that generates coherent, high-intensity electromagnetic radiation by using a beam of accelerated electrons as the lasing medium. Unlike traditional lasers that use atoms or molecules as the active medium, free-electron lasers exploit the unique properties of free electrons, allowing them to produce laser light across a wide range of wavelengths, including the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. Key points...
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    nanotechnology
    The use of atoms, molecules and molecular-scale structures to enhance existing technology and develop new materials and devices. The goal of this technology is to manipulate atomic and molecular particles to create devices that are thousands of times smaller and faster than those of the current microtechnologies.
    nanotube
    A nanotube, also known as a nanotubule or simply a tube-like structure, is a nanoscale cylindrical structure composed of various materials, including carbon, boron nitride, or other compounds. Nanotubes have unique physical and chemical properties due to their small size and specific atomic arrangement, making them of significant interest in various scientific and technological fields. One of the most well-known types of nanotubes is the carbon nanotube (CNT), which is composed of carbon...
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    transmission electron microscope
    A transmission electron microscope (TEM) is a powerful microscopy technique that uses a beam of electrons to create high-resolution images of extremely thin samples. In a TEM, electrons are transmitted through the sample rather than being bounced off its surface, as in scanning electron microscopy (SEM). The sample, typically prepared as an ultrathin section or a thin film, is placed in the path of the electron beam. As the electrons pass through the sample, they interact with its atoms,...
    aerospacebeamBiophotonicsBNNTbody armorboronboron nitrideenergyfiber opticsfree-electron laserindustrialJefferson LabJefferson National Accelerator FacilityKevin JordanLangley Research CenterMaterials Research SocietymedicalMicroscopyMike SmithnanonanotechnologynanotubeNASANational Institute of AerospaceNews & FeaturesphotonicsPVCResearch & Technologysingle-wallsolar cellsTEMtransmission electron microscopeyarnLasers

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.