Search
Menu
Excelitas PCO GmbH - PCO.Edge 11-24 BIO LB

Infrared Imaging: The Short and the Long of It

Facebook X LinkedIn Email
Infrared detectors are finding new applications and facing new challenges.

Hank Hogan, Contributing Editor

Where vision ends, infrared begins. Stretching from 0.7 to 1000 μm, the infrared spectrum covers a lot of ground, as do the imaging applications that make use of this part of the spectrum. These applications include biological studies, surveillance, fusion research and thermal imaging that highlights defects before a part fails. A look at various applications shows how infrared detectors are being used and what challenges for the technology remain. Single nanotubes The core market for Princeton Instruments/Acton of Trenton, N.J., is research imaging, which typically involves...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: April 2007
    Glossary
    infrared
    Infrared (IR) refers to the region of the electromagnetic spectrum with wavelengths longer than those of visible light, but shorter than those of microwaves. The infrared spectrum spans wavelengths roughly between 700 nanometers (nm) and 1 millimeter (mm). It is divided into three main subcategories: Near-infrared (NIR): Wavelengths from approximately 700 nm to 1.4 micrometers (µm). Near-infrared light is often used in telecommunications, as well as in various imaging and sensing...
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    thermal imaging
    Thermal imaging is a technology that detects infrared radiation (heat) emitted by objects and converts it into an image, known as a thermogram, which displays temperature variations in different colors. Unlike visible light imaging, thermal imaging does not require any ambient light and can be used in complete darkness or through obstructions such as smoke, fog, and certain materials. Thermal cameras use sensors to detect infrared radiation and generate images based on the temperature...
    BiophotonicsdefenseenergyFeaturesimaging applicationsindustrialinfraredphotonicsSensors & Detectorsthermal imaging

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.