Search
Menu
Lambda Research Optics, Inc. - Mission

Holograms Enabled by $10 Optical Chip

Facebook X LinkedIn Email
CAMBRIDGE, Mass., June 20, 2013 — An optical chip built by an MIT graduate student at a cost of $10 could be a “game changer” for holography, enhancing the resolution of conventional 2-D displays and enabling color holographic videos suitable for 3-D television. In holograms, light beams pass through a so-called diffraction fringe, bending the light so that they emerge as a host of different angles. To produce a holographic video, diffraction fringes must be created from patterns displayed on an otherwise transparent screen. The problem with this approach, however, is that the pixels of the diffraction...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: June 2013
    Glossary
    acousto-optic modulation
    Acousto-optic modulation refers to the process of using acoustic waves to modulate the properties of light passing through an optically transparent material. This modulation occurs due to the acousto-optic effect, where the refractive index of the material is periodically altered by the passing acoustic wave. As a result, the phase, intensity, polarization, or direction of the light beam can be controlled and modulated in real-time. Key points about acousto-optic modulation include: ...
    Filtersacousto-optic modulationAmericasConsumerDaniel Smalleyholographic-videoImagingindustrialMassachusettsMichael BoveMicroscopyMITNasser Peyghambarianoptical chipsOpticsPierre BlancheResearch & TechnologyStephen BentonUniversity of Arizonawaveguides

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.