Search
Menu
Zurich Instruments AG - Challenge Us 10/24 LB

FLIM Analysis Enhanced with Phasor Plotting Aids Quantitative Biology

Facebook X LinkedIn Email
Deciphering FLIM images remains a challenge, but a graphical representation of data collected from multiple images may unlock insights.

YUANSHENG SUN, SHIH-CHIU JEFF LIAO, AND BENIAMINO BARBIERI, Barbieri, ISS INC.

With the peculiar selectivity of probes, fluorescence lifetime imaging (FLIM) can provide quantitative information about the probe microenvironment, including the presence of ions, pH, oxygen, viscosity, and electrical signals. This capability has proved to be valuable in key life sciences research areas, such as in the detection of molecular/protein interactions, molecular environment sensing, drug development, and metabolic imaging for studying cancer as well as neurodegenerative, diabetes, cardiovascular, and respiratory diseases. Traditional methods for determining fluorescence decay...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: July 2024
    Glossary
    modulation frequency
    Rate at which optical radiation or a signal is varied through the use of a mechanical or electronic chopper. Also called chopping frequency.
    frequency domain
    The frequency domain is a concept used in signal processing and analysis to represent signals and data in terms of their frequency components. In contrast to the time domain, where signals are described with respect to time, the frequency domain provides information about the frequency content of a signal. Here are key points related to the frequency domain: Frequency and time domains: Time domain and frequency domain are two different ways of representing the same information. A signal's...
    fluorescence lifetime imaging
    Fluorescence lifetime imaging (FLIM) is an advanced imaging technique that provides information about the lifetime of fluorescence emissions from fluorophores within a sample. Unlike traditional fluorescence imaging, which relies on the intensity of emitted light, FLIM focuses on the time a fluorophore remains in its excited state before returning to the ground state. This fluorescence lifetime is influenced by the local environment and can be used for various applications in biological and...
    FeaturesFLIMMiPASTEDFRETNADHphasor plotmodulation frequencyfrequency domainVistaVisionISS Inc.universal semicircletwo-component analysisfluorescence lifetime imaging

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.