Search
Menu
PI Physik Instrumente - Alignment Engines LB ROS 1-25

Dual Microscopes Illuminate Electronic Switching Speeds

Facebook X LinkedIn Email
GAITHERSBURG, Md., Sept. 29 -- Although silicon is still the mainstay of the semiconductor industry, a new method may put materials like gallium nitride and silicon carbide into wider use in scanning semiconductors for defects. Such advanced semiconductor materials can operate at higher voltages and provide faster switching speeds, an important characteristic in determining how fast a semiconductor circuit can process information. Joseph Kopanski, a researcher for the National Institute of Standards and Technology, and Korean guest researcher G. H. Buh combined an atomic force microscope...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: September 2003
    Glossary
    atomic force microscope
    An atomic force microscope (AFM) is a high-resolution imaging and measurement instrument used in nanotechnology, materials science, and biology. It is a type of scanning probe microscope that operates by scanning a sharp tip (usually a few nanometers in diameter) over the surface of a sample at a very close distance. The tip interacts with the sample's surface forces, providing detailed information about the sample's topography and properties at the nanoscale. atomic force microscope...
    gallium nitride
    Gallium nitride (GaN) is a compound made up of gallium (Ga) and nitrogen (N). It is a wide-bandgap semiconductor material that exhibits unique electrical and optical properties. Gallium nitride is widely used in the production of various electronic and optoelectronic devices, including light-emitting diodes (LEDs), laser diodes, power electronics, and high-frequency communication devices. Key points about gallium nitride (GaN): Chemical composition: Gallium nitride is a binary compound...
    atomic force microscopeBasic Sciencegallium nitrideMicroscopyNational Institute of Standards and TechnologyNews & Featuressemiconductors

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.