Search
Menu
Spectrogon US - Optical Filters 2024 LB

Doping Process Increases Conductivity, Transparency of Graphene

Facebook X LinkedIn Email
An interdisciplinary team of researchers from Columbia University and Sungkyungkwan University (South Korea) has introduced a clean technique to dope graphene via a charge-transfer layer made of low-impurity tungsten oxyselenide (TOS). The team generated the new “clean” layer by oxidizing a single atomic layer of another 2D material, tungsten selenide. When team members layered TOS on top of the graphene, they found that it left the graphene riddled with electricity-conducting holes. The holes could be fine-tuned to better control the materials’ electricity-conducting...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: November 2021
    Glossary
    transparency
    An image affixed to a transparent photographic film or plate by photographic, printing or chemical methods. It may be viewed by transmitted light.
    graphene
    Graphene is a two-dimensional allotrope of carbon consisting of a single layer of carbon atoms arranged in a hexagonal lattice pattern. It is the basic building block of other carbon-based materials such as graphite, carbon nanotubes, and fullerenes (e.g., buckyballs). Graphene has garnered significant attention due to its remarkable properties, making it one of the most studied materials in the field of nanotechnology. Key properties of graphene include: Two-dimensional structure:...
    doping
    In the context of materials science and semiconductor physics, doping refers to the intentional introduction of impurities into a semiconductor material in order to alter its electrical properties. The impurities, called dopants, are atoms of different elements than those comprising the semiconductor crystal lattice. Doping is a crucial technique in semiconductor device fabrication, as it allows engineers to tailor the conductivity and other electrical characteristics of semiconductor...
    infrared
    Infrared (IR) refers to the region of the electromagnetic spectrum with wavelengths longer than those of visible light, but shorter than those of microwaves. The infrared spectrum spans wavelengths roughly between 700 nanometers (nm) and 1 millimeter (mm). It is divided into three main subcategories: Near-infrared (NIR): Wavelengths from approximately 700 nm to 1.4 micrometers (µm). Near-infrared light is often used in telecommunications, as well as in various imaging and sensing...
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    nanophotonics
    Nanophotonics is a branch of science and technology that explores the behavior of light on the nanometer scale, typically at dimensions smaller than the wavelength of light. It involves the study and manipulation of light using nanoscale structures and materials, often at dimensions comparable to or smaller than the wavelength of the light being manipulated. Aspects and applications of nanophotonics include: Nanoscale optical components: Nanophotonics involves the design and fabrication of...
    optoelectronics
    Optoelectronics is a branch of electronics that focuses on the study and application of devices and systems that use light and its interactions with different materials. The term "optoelectronics" is a combination of "optics" and "electronics," reflecting the interdisciplinary nature of this field. Optoelectronic devices convert electrical signals into optical signals or vice versa, making them crucial in various technologies. Some key components and applications of optoelectronics include: ...
    Research & TechnologyOpticstransparencygraphenedopingMaterialstungsten selenidedopedtungsten oxyselenideColumbia UniversitySungkyungkwan Universityconductivityelectronselectron holeinfrared lightinfraredopto-electronicsAmericassiliconsilicon photonicsnanonanophotonicsMichal LipsonoptoelectronicsTechnology News

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.