Search
Menu
Excelitas Technologies Corp. - X-Cite Vitae LB 11/24

Diamond Metalens Could Improve Quantum Device Performance and Scalability

Facebook X LinkedIn Email
At the chemical level, diamonds are no more than carbon atoms aligned in a 3D crystal lattice. Even a diamond that looks flawless contains defects that can absorb or emit light. Small defects in diamonds called nitrogen-vacancy (NV) centers hold electron spins that can be manipulated at room temperature. Each NV center emits light that can provide information about the spin’s quantum state. Collecting light from deeply embedded NV centers usually requires a bulky optical microscope in a highly controlled laboratory environment. Now, a research group at the University of...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: June 2019
    Glossary
    metalens
    A metalens, short for "metasurface lens," is a type of optical lens that uses nanostructured materials to manipulate light at a subwavelength scale. Unlike traditional lenses made of glass or other transparent materials, metalenses do not rely on the curvature of their surface to refract or focus light. Instead, they use carefully engineered patterns of nanostructures, such as nanoscale antennas or dielectric structures, to control the phase and amplitude of light across the lens's surface....
    quantum
    The term quantum refers to the fundamental unit or discrete amount of a physical quantity involved in interactions at the atomic and subatomic scales. It originates from quantum theory, a branch of physics that emerged in the early 20th century to explain phenomena observed on very small scales, where classical physics fails to provide accurate explanations. In the context of quantum theory, several key concepts are associated with the term quantum: Quantum mechanics: This is the branch of...
    quantum optics
    The area of optics in which quantum theory is used to describe light in discrete units or "quanta" of energy known as photons. First observed by Albert Einstein's photoelectric effect, this particle description of light is the foundation for describing the transfer of energy (i.e. absorption and emission) in light matter interaction.
    freeform optics
    Freeform optics refers to the design and fabrication of optical surfaces that do not follow traditional symmetric shapes, such as spheres or aspheres. Unlike standard optical components with symmetric and rotationally invariant surfaces, freeform optics feature non-rotationally symmetric and often complex surfaces. These surfaces can be tailored to meet specific optical requirements, offering greater flexibility in designing optical systems and achieving improved performance. Key points about...
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    Research & TechnologyeducationAmericasUniversity of PennsylvaniaImagingLight SourcesMaterialsmetamaterialsmetalenslensesmetasurfacesingle photonsquantumquantum opticsCommunicationsfreeform opticsnanonanofabricationoptical fibersTech Pulse

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.