Search
Menu
Hamamatsu Corp. - Creating a Better Future LB 1-25

Building a Better Infrared Detector

Facebook X LinkedIn Email
AlAsSb “wall” between N-type layers reduces dark current.

Hank Hogan

If Robert Frost had been an optical engineer and not a poet, he might have said “good barriers make good detectors” upon seeing the work of Shimon Maimon and Gary W. Wicks of the University of Rochester in New York. The scientists have demonstrated a new type of midwave (2 to 5 μm) infrared detector with reduced dark current and higher operating temperature than PN photodiodes. Figure 1. A band diagram depicts an infrared detector composed of an InAs-based nBn structure (biased under operating conditions), in which a barrier layer reduces dark current. The inset shows the flat-band...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: January 2007
    Glossary
    infrared detector
    An infrared detector is a device that is used to detect and measure infrared radiation, which lies beyond the visible spectrum of light. These detectors are utilized in various applications, including thermal imaging, night vision, spectroscopy, remote sensing, and industrial process monitoring. Infrared detectors convert the infrared radiation into an electrical signal, allowing for the detection and analysis of heat patterns, temperature variations, or infrared signatures of objects or...
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    detectorsinfrared detectornanooptical engineerphotonicsResearch & TechnologySensors & DetectorsTech Pulse

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.