Search
Menu
Sheetak -  Cooling at your Fingertip 11/24 LB

Photonic-Phononic Waveguides Used to Create Brillouin Laser

Facebook X LinkedIn Email
A laser that uses sound waves to amplify light could help address the need for silicon lasers that can overcome obstacles associated with silicon’s indirect bandgap when powering photonic integrated circuits.

The laser design, created by a research team at Yale University, corrals amplified light within a racetrack shape to trap the light in a circular motion. The suspended silicon waveguide racetrack structure stimulates the nonlinear effect of Brillouin scattering to achieve lasing from silicon.

Illustration of the silicon Brillouin laser in operation. Yale University.

Silicon Brillouin laser in operation. The laser is formed from nanoscale silicon structures that confine both light and sound waves. Courtesy of Yale University.

To amplify the light with sound, the laser uses a special structure developed by researchers that causes it to enter a dynamic regime, in which phonon linewidth narrowing is produced through optical self-oscillation. The structure is “essentially a nanoscale waveguide that is designed to tightly confine both light and sound waves and maximize their interaction,” said Peter Rakich, associate professor at Yale, who led the research. 

The waveguide has two distinct channels for light to propagate. “This allows us to shape the light-sound coupling in a way that permits remarkably robust and flexible laser designs,” said researcher Eric Kittlaus.

Ohara Corp. - Optical Glass, Polish substrates 10-23

Amplification of light using sound would not be possible without this type of structure, said researchers. To create a laser that uses a combination of light and sound waves to amplify light on a chip, researchers had to design and fabricate a device where the amplification outpaced the loss, and they had to understand these counterintuitive dynamics.

“What we observe is that while the system is clearly an optical laser, it also generates very coherent hypersonic waves,” said researcher Nils Otterstrom. Results of the research could provide a platform to develop silicon-based optoelectronic circuits and devices, leading to potential applications ranging from integrated oscillators to new schemes for encoding and decoding information.

“Using silicon, we can create a multitude of laser designs, each with unique dynamics and potential applications," said Ryan Behunin, an assistant professor at Northern Arizona University and a former member of the Rakich lab. "These new capabilities dramatically expand our ability to control and shape light in silicon photonic circuits.” 

The research was published in Science (doi:10.1126/science.aar6113).

Published: June 2018
Glossary
waveguide
A waveguide is a physical structure or device that is designed to confine and guide electromagnetic waves, such as radio waves, microwaves, or light waves. It is commonly used in communication systems, radar systems, and other applications where the controlled transmission of electromagnetic waves is crucial. The basic function of a waveguide is to provide a path for the propagation of electromagnetic waves while minimizing the loss of energy. Waveguides come in various shapes and sizes, and...
integrated photonics
Integrated photonics is a field of study and technology that involves the integration of optical components, such as lasers, modulators, detectors, and waveguides, on a single chip or substrate. The goal of integrated photonics is to miniaturize and consolidate optical elements in a manner similar to the integration of electronic components on a microchip in traditional integrated circuits. Key aspects of integrated photonics include: Miniaturization: Integrated photonics aims to...
optoelectronics
Optoelectronics is a branch of electronics that focuses on the study and application of devices and systems that use light and its interactions with different materials. The term "optoelectronics" is a combination of "optics" and "electronics," reflecting the interdisciplinary nature of this field. Optoelectronic devices convert electrical signals into optical signals or vice versa, making them crucial in various technologies. Some key components and applications of optoelectronics include: ...
Research & TechnologyAmericaseducationLaserssilicon photonicsWaveguideintegrated photonicsphotonic-phononic waveguideBrillouin laseroptical circuitsoptoelectronicsTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.