Search
Menu
Sheetak -  Cooling at your Fingertip 11/24 LB

Opto-Refrigerative Tweezers Overcome Heat Damage to Particles

Facebook X LinkedIn Email
A tweak to optical tweezer technology introduced by researchers at the University of Texas at Austin fixes the problem of heat that affects the tool. The prolonged interaction with the laser beam can alter molecules and particles or damage them with excessive heat in optical tweezer technology. The tweak could lead to new research and simplify processes for using optical tweezers.

The breakthrough that avoids overheating comes out of a combination of two concepts: the use of a substrate composed of materials that are cooled when a light is shined on them (in this case, a laser), and thermophoresis, a phenomenon in which mobile particles will commonly gravitate toward a cooler environment. The cooler materials attract particles, making them easier to isolate while also protecting them from overheating. By solving the heat problem, optical tweezers could become more widely used to study biomolecules, DNA, diseases, and more. 
Optical tweezers use light to trap particles for analysis. A new breakthrough keeps those particles from overheating. Courtesy of the University of Texas at Austin
Optical tweezers use light to trap particles for analysis. A new breakthrough keeps those particles from overheating. Courtesy of the University of Texas at Austin.

Yuebing Zheng, corresponding author of the research paper and an associate professor in the Walker Department of Mechanical Engineering, said, “Our tool addresses this critical challenge: Instead of heating the trapped objects, we have them controlled at a lower temperature.”

Excelitas Technologies Corp. - X-Cite Vitae  MR 11/24

The research team calls its technology opto-refrigerative tweezers (ORTs). The technology works by manipulating objects at a laser-generated cold spot. This is enabled by optical refrigeration and thermophoresis. The localized laser cooling of the substrate generates a nonuniform temperature gradient field in which colloidal particles and molecules can be trapped at the low temperature region.

Since it is based on a temperature gradient field, ORT allows the long-range trapping with a low-intensity and weakly focused laser beam, which can reduce the photon degradation of target objects.
In addition, the general thermophobic nature enables the trapping of various colloids and biomolecules in liquid media by ORT. The researchers realized localized laser cooling in liquid media with Yb:YLF crystals and a 1020-nm laser.

Future research may focus on improving the surface uniformity of the substrate, or fine-tuning of the tweezers’ trapping potential.

The team expects that the tool will prove useful in a variety of fields, including materials science, physical chemistry, and biological science.

The research was published in Science Advances (www.doi.org/10.1126/sciadv.abh1101).


Published: July 2021
Glossary
optical tweezers
Optical tweezers refer to a scientific instrument that uses the pressure of laser light to trap and manipulate microscopic objects, such as particles or biological cells, in three dimensions. This technique relies on the momentum transfer of photons from the laser beam to the trapped objects, creating a stable trapping potential. Optical tweezers are widely used in physics, biology, and nanotechnology for studying and manipulating tiny structures at the microscale and nanoscale levels. Key...
laser cooling
Laser cooling is a technique used to reduce the temperature of a material or a collection of atoms or molecules by using laser light. It is based on the principle of selective absorption and emission of photons by atoms or molecules. In laser cooling, specially tuned laser beams are directed at the material or atoms. When these atoms absorb photons from the laser light, they gain momentum in the direction of the laser beam due to the momentum carried by the photons. However, according to...
substrate
A substrate refers to a material or surface upon which another material or process is applied or deposited. In various fields, such as electronics, biology, chemistry, and manufacturing, the term "substrate" is used with specific contexts, but the fundamental definition remains consistent: it is the underlying material or surface that provides a foundation for subsequent processes or applications. Here are some examples of how a substrate is used in different fields: Electronics: In...
Research & Technologyoptical tweezersoptical tweezingoptical tweezer systemsoptical tweezer systemopto-refrigerative tweezersoptorefrigerative tweezersLasersOpticslaser coolingheat damagethermalthermophoresisBiophotonicsphotodamageUniversity of TexasUniversity of Texas at AustinArthur AshkinsubstrateDNADNA researchBioScan

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.