Search
Menu
Zurich Instruments AG - Challenge Us 10/24 LB

Mini Oven Heats Fluids for LoC

Facebook X LinkedIn Email
GAITHERSBURG, Md., Nov. 9, 2007 -- By embedding a thin-film microwave transmission line between a glass substrate and a polymer block, scientists have created what could be the world's smallest microwave oven. The tiny mechanism can heat a pinhead-sized drop of liquid inside a container slightly shorter than an ant and half as wide as a single hair. The "micro microwave" is intended for lab-on-a-chip (LoC) devices that perform chemical analyses on tiny samples.
MicroMicrowave.jpg
The NIST micro microwave oven. The gold traces on the glass circle are microwave transmission lines. The 1.25-cm-wide polymer block over the transmission line in the center houses a miniature chamber in which a pinhead-sized drop of fluid is heated. (Photo courtesy NIST)
In a paper in the November 2007 Journal of Micromechanics and Microengineering, the National Institute of Standards of Technology (NIST) and George Mason University research team led by NIST engineer Michael Gaitan describes for the first time how a tiny dielectric microwave heater can be successfully integrated with a microfluidic channel to control selectively and precisely the temperature of fluid volumes ranging from a few microliters (millionth of a liter) to sub-nanoliters (less than a billionth of a liter). Sample heating is an essential step in a wide range of analytic techniques that could be built into microfluidic devices, including the high-efficiency polymerase chain reaction (PCR) process that rapidly amplifies tiny samples of DNA for forensic work, and methods to break cells open to release their contents for study.

Excelitas Technologies Corp. - X-Cite Vitae  MR 11/24

After they embedded the microwave line between the glass substrate and polymer block, the researchers made a trapezoidal-shaped cut in the polymer block only 7-µm across at its narrowest -- the diameter of a red blood cell -- and nearly 4-mm long (about the length of an ant) to serve as the chamber for the fluid to be heated.

Based on classical theory of how microwave energy is absorbed by fluids, they developed a model to explain how their miniature oven would work. They predicted that electromagnetic fields localized in the gap would directly heat the fluid in a selected portion of the microchannel while leaving the surrounding area unaffected. Measurements of the microwaves produced by the system and their effect on the fluid temperature in the microchannel validated the model by showing that the increase in temperature of the fluid was predominantly due to the absorbed microwave power.

Once the new technology is more refined, the researchers hope to use it to design a microfluidic microwave heater that can cycle temperatures rapidly and efficiently for a host of applications.

The work is supported by the Office of Science and Technology at the Department of Justice’s National Institute of Justice.

For more information, visit: www.nist.gov

Published: November 2007
Glossary
lab-on-a-chip
A lab-on-a-chip (LOC) is a miniaturized device that integrates various laboratory functions and capabilities onto a single, compact chip. Also known as microfluidic devices, lab-on-a-chip systems are designed to perform a variety of tasks traditionally carried out in conventional laboratories, but on a much smaller scale. These devices use microfabrication techniques to create channels, chambers, and other structures that facilitate the manipulation of fluids, samples, and reactions at the...
microwave
An electromagnetic wave lying within the region of the frequency spectrum that is between about 1000 MHz (1 GHz) and 100,000 MHz (100 GHz). This is equivalent to the wavelength spectrum that is between one millimeter and one meter, and is also referred to as the infrared and short wave spectrum.
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
polymer
Polymers are large molecules composed of repeating structural units called monomers. These monomers are chemically bonded together to form long chains or networks, creating a macromolecular structure. The process of linking monomers together is known as polymerization. Polymers can be classified into several categories based on their structure, properties, and mode of synthesis. Some common types of polymers include: Synthetic polymers: These are human-made polymers produced through...
analyticantBiophotonicsDNAelectromagneticfluidForensicGeorge Mason Universityglass substratehairlab-on-a-chipLoCMichael GaitanmicromicrochannelmicrofluidicmicrowavenanoNews & FeaturesNISTovenPCRphotonicspolymerred blood cell

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.