Search
Menu
PI Physik Instrumente - Space Qualified Steering LB LW 12/24

Manfra Chosen to Lead Microsoft’s Station Q Purdue

Facebook X LinkedIn Email
WEST LAFAYETTE, Ind., April 22, 2016 — Professor Michael Manfra at Purdue University has been selected to lead Station Q Purdue, an elite team assembled by Microsoft’s Station Q to pursue quantum computing.

Mathematician and Fields Medal winner Michael Freedman leads Microsoft Station Q, which includes an internal team of theorists coupled to four satellite Station Q experimental groups and two satellite Station Q theory teams working in close collaboration.

Purdue research engineer and graduate student Geoff Gardner (front) and professor Michael Manfra stand next to a molecular beam epitaxy system in the Manfra laboratories at Discovery Park.
Purdue research engineer and graduate student Geoff Gardner (front) and professor Michael Manfra stand next to a molecular beam epitaxy system in the Manfra laboratories at Discovery Park. Manfra leads Station Q Purdue, an experimental research team collaborating with Microsoft Station Q to pursue a path to quantum computing. Courtesy of Purdue University/Rebecca Wilcox.

"Microsoft is in the quantum game for the long run; we are investing in the scientific and engineering foundations," Freedman said. "Mike Manfra comes from the world's finest tradition in materials growth, having early training at Bell Labs, but what really makes him stand out is that he is also a transport physicist and truly understands what will happen downstream to the samples he grows. This gives him a rare insight."

Manfra is a professor of physics and astronomy, as well as materials engineering, and electrical and computer engineering. His research focus is on the creation and study of new materials to be used in quantum computers.

With Microsoft support, Manfra and his team will use molecular beam epitaxy to create new platforms for topological qubits.

"A big challenge in quantum computing is that qubits interact with their environment and are vulnerable to decoherence, or the loss of quantum information before a computation is complete or a result is stored in memory," Manfra said. "There are two approaches to this problem: accept it as a fact of life and try to correct for the errors decoherence introduces or, instead, be clever about the physical platform in which you make your qubit and try to use topology to make it insensitive to environmental noise. The latter is the idea behind topological quantum computing and is what Microsoft is pursuing."
Sheetak -  Cooling at your Fingertip 11/24 MR

Published: April 2016
Glossary
astronomy
The scientific observation of celestial radiation that has reached the vicinity of Earth, and the interpretation of these observations to determine the characteristics of the extraterrestrial bodies and phenomena that have emitted the radiation.
astronomyBusinesspeopleappointmentsAmericamicroscoftmcihael manfraPurdueIllinoisstation Qquantum computingCommunicationsResearch & Technologyeducationawardsqubits

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.