Search
Menu
Sheetak -  Cooling at your Fingertip 11/24 LB

Light Mapped Through Holes

Facebook X LinkedIn Email
DELFT, Netherlands, May 9, 2008 -- The question of how light squeezes through small holes has been answered by a research team successful in accurately mapping the process for the first time.

The researchers -- Aurele Adam, PhD, and professor Paul Planken of Delft University of Technology, in conjunction with two South Korean teams and one German group -- said their work also promises significant improvements in the new imaging technique of terahertz microscopy as well as terahertz microspectroscopy, a technique for identifying tiny quantities of substances using light.

According to the laws of physics, it is particularly difficult to pass light through a hole smaller than half the wavelength of the light used. The researchers managed to provide insight into this process by conducting measurements using terahertz (THz) radiation, or far-infrared light.

THz radiation, a type of electromagnetic radiation, is gaining popularity as a way to create images because many materials -- such as paper, plastics and clothing -- that are opaque in visible light become transparent under THz radiation.

This type of radiation allows the researchers to measure the force of the penetrating light’s electrical field near the hole and not, as is usual, the intensity of the penetrating light. The electrical field’s values reveal much more about how light behaves in such situations than intensity can. Measurement of the strength of the electrical field is done with great precision by measuring the refractive index of a crystal near the hole using a laser beam. The crystal’s refractive index varies (very slightly) when in a variable electrical field. By measuring the variations in the refractive index, conclusions can be drawn on the strength of the light’s electrical field near the hole.

Meadowlark Optics - Wave Plates 6/24 MR 2024

"This process has never been mapped properly, mainly because the technology was not available to do so," said Planken.

The experiments largely confirm, for the first time, what is known as the Bouwkamp model, named after a Dutch researcher at Philips who, in 1950, created a theoretical model for the way light passes through small holes. As predicted by Bouwkamp, the strength of the electrical field is greatest at the edge of the holes and the field’s strength decreases as the frequency of the THz light used decreases.

The researchers also discovered that even if the hole is up to 50 times smaller than the wavelength used, sufficient light can pass through to allow measurements near the hole -- an extremely difficult task using other methods. This technique has also enabled the researchers to record the entire process, allowing them to observe, slowed down a thousand billion (1012) times, how the light exits the hole and subsequently how the light waves move outwards, resembling the ring-shaped ripples that form on the water's surface after a rock has been thrown into a pond.

Planken said in the long term he hopes to use the tiny holes as an improved source of THz light for applications such as THz microscopy and microspectroscopy, because the smaller these source holes become, the sharper the images that can be created, and the easier it will be to measure small quantities of substances.

Improving the sharpness of THz microscopes, coupled with more sensitive detectors, will improve the viability of creating images of biological cells using the radiation, the researchers said.

Their findings appear in the May 12 issue of the journal Optics Express.

For more information, visit: www.english.tudelft.nl

Published: May 2008
Glossary
light
Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
radiation
The emission and/or propagation of energy through space or through a medium in the form of either waves or corpuscular emission.
terahertz
Terahertz (THz) refers to a unit of frequency in the electromagnetic spectrum, denoting waves with frequencies between 0.1 and 10 terahertz. One terahertz is equivalent to one trillion hertz, or cycles per second. The terahertz frequency range falls between the microwave and infrared regions of the electromagnetic spectrum. Key points about terahertz include: Frequency range: The terahertz range spans from approximately 0.1 terahertz (100 gigahertz) to 10 terahertz. This corresponds to...
wavelength
Electromagnetic energy is transmitted in the form of a sinusoidal wave. The wavelength is the physical distance covered by one cycle of this wave; it is inversely proportional to frequency.
Aurele AdamBasic ScienceBiophotonicsBouwkampcrystalsDelft University of TechnologyelectromagneticholeslightmappingMicroscopymicrospectroscopynanoNews & FeaturesOptics ExpressPaul PlankenphotonicsradiationrefractiveSensors & Detectorsterahertzterahertz microscopyTHzwavelengthLasers

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.