Search
Menu
Lambda Research Optics, Inc. - DFO

Frequency Converters Take Big Step Toward Miniaturizing Lasers

Facebook X LinkedIn Email
Researchers from Columbia University and Politecnico di Milano used an atomically thin material to build microscopic color converters. The advancement is a first step toward replacing the standard materials used in today’s tunable lasers, which are measured in millimeters and centimeters.

“Nonlinear optics is currently a macroscopic world, but we want to make it microscopic,” said Chiara Trovatelloa, a postdoctoral student who worked on the research in the lab of James Schuck, an associate professor of mechanical engineering at Columbia.

The device — a fraction of the size of conventional color converters — could produce new kinds of ultrasmall optical circuit chips and advance quantum optics, the researchers said. 

Devices that use lasers often need to be able to deploy different colors of laser light. For example, a green laser pointer is produced by an infrared laser that is converted to a visible color by a macroscopic material. Although researchers use nonlinear optical techniques to change the color of laser light, conventionally used materials must be relatively thick for color conversion to occur efficiently.

Molybdenum disulfide (MoS2
) is one of the most studied transition metal dichalcogenides, which are 2D materials that can be peeled into atomically thin layers. Single layers of MoS2 can convert light frequencies efficiently, but they are too thin to be used to build devices. Larger crystals of MoS2 tend to be more stable in a noncolor converting form.

To fabricate the necessary crystals, known as 3R-MoS
2, the team worked with the commercial 2D-material supplier HQ Graphene. The researchers characterized how efficiently devices built from stacks of MoS2 less than 1 μm thick convert light frequencies at telecom wavelengths to produce different colors.

Tiny crystals made from the 2D material molybdenum disulfide (MoS2) can efficiently change the color of light, which could help researchers shrink laser-based devices to microscopic scales. Courtesy of Nicoletta Barolini, Columbia University.


Tiny crystals made from molybdenum disulfide (MoS2) efficiently changed the color of light, which could help researchers shrink laser-based devices to microscopic scales. Courtesy of Nicoletta Barolini/Columbia University.

Using 3R-MoS2, the researchers tested how efficiently samples of varying thickness converted the frequency of light. Special sensors are usually needed to register the light produced by a sample, and it takes a long time for them to do so, said  Xinyi Xu, a doctoral student in Schuck's lab. “With 3R-MoS2, we could see the extremely large enhancement almost immediately," he said. The team recorded these conversions at telecom wavelengths.

Perkins Precision Developments - Custom Laser Mirrors MR 4/24

In one scan, Xu focused on a random edge of a crystal and saw fringes that suggested that waveguide modes were present inside the material. Waveguide modes keep different color photons in sync that might otherwise move at different speeds across the crystal, and they could possibly be used to generate entangled photons. 

Currently, the most popular crystal for waveguided conversion and generating entangled photons is lithium niobate, a hard and stiff material that needs to be fairly thick for achieving useful conversion efficiencies. 3R-MoS2 is equally efficient but is 100x smaller and flexible enough to be combined with silicon photonic platforms to create optical circuits on chips, following the trajectory of ever-smaller electronics.

The challenge to realizing real-world applications of the color converters is large-scale production of 3R-MoS2 and high-throughput structuring of the devices, the researchers said.  

The research was published in Nature Photonics (www.doi.org/10.1038/s41566-022-01053-4).


Published: August 2022
Glossary
color
The attribute of visual experience that can be described as having quantitatively specifiable dimensions of hue, saturation, and brightness or lightness. The visual experience, not including aspects of extent (e.g., size, shape, texture, etc.) and duration (e.g., movement, flicker, etc.).
quantum
The term quantum refers to the fundamental unit or discrete amount of a physical quantity involved in interactions at the atomic and subatomic scales. It originates from quantum theory, a branch of physics that emerged in the early 20th century to explain phenomena observed on very small scales, where classical physics fails to provide accurate explanations. In the context of quantum theory, several key concepts are associated with the term quantum: Quantum mechanics: This is the branch of...
nonlinear optics
Nonlinear optics is a branch of optics that studies the optical phenomena that occur when intense light interacts with a material and induces nonlinear responses. In contrast to linear optics, where the response of a material is directly proportional to the intensity of the incident light, nonlinear optics involves optical effects that are not linearly dependent on the input light intensity. These nonlinear effects become significant at high light intensities, such as those produced by...
waveguide
A waveguide is a physical structure or device that is designed to confine and guide electromagnetic waves, such as radio waves, microwaves, or light waves. It is commonly used in communication systems, radar systems, and other applications where the controlled transmission of electromagnetic waves is crucial. The basic function of a waveguide is to provide a path for the propagation of electromagnetic waves while minimizing the loss of energy. Waveguides come in various shapes and sizes, and...
semiconductor
A semiconductor is a type of material that has electrical conductivity between that of a conductor and an insulator. In other words, semiconductors have properties that are intermediate between metals (good conductors of electricity) and insulators (poor conductors of electricity). The conductivity of a semiconductor can be controlled and modified by factors such as temperature, impurities, or an applied electric field. The most common semiconductors are crystalline solids, and they are...
Research & TechnologyOpticsLasersMaterialscolorquantum2Dmolybdenum disulfideTunable Lasersnonlinear opticsWaveguidenonlinearsemiconductorCommunicationsFiber Optics & CommunicationstelecomtelecommunicationsColumbia UniversityPolitecnico di MilanoAmericasEuropeNature PhotonicsTechnology News

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.