Search
Menu
Excelitas Technologies Corp. - X-Cite Vitae LB 11/24

Anapole Lasers Generate Ultrafast Pulses for Managing Nanoscale Optics

Facebook X LinkedIn Email
THUWAL, Saudi Arabia, Aug. 17, 2017 — Anapole lasers made from semiconductors shaped into energy-storing nanodisks could be useful as an energy source for nanoscale optics in silicon-compatible platforms.

According to researchers from King Abdullah University of Science & Technology (KAUST), the lasers could be made small enough to fit onto computer circuit boards while retaining the ability to shape and control laser pulses for manipulating things such as data switches, biomedical implants and solar cells. In the anapole state, the laser does not emit energy in any direction and traps light inside the nanodisk.

Anapole laser for storing controlled energy, could be used to manipulate nanoscale devices, KAUST.

The complex flashing patterns of fireflies (left) led KAUST researchers to develop anapole lasers that use interactions between energy-storing nanodisks (center) to generate high-speed pulses of light on microchips (right). Courtesy of ref 1. Gongora et al.

“The challenge of reducing an optical source down to the nanoscale is that it starts to emit energy strongly in all directions. This makes it almost impossible to control.” said Andrea Fratalocchi, an associate professor at KAUST.

The researchers developed a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, they were able to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties.

Leveraging the near-field character of anapole modes, the team demonstrated a spontaneously polarized nanolaser able to couple light into waveguide channels four orders of magnitude greater in intensity than classical nanolasers. In addition the team was able to generate ultrafast (100 femtosecond) pulses via spontaneous mode locking of several anapoles.

Sheetak -  Cooling at your Fingertip 11/24 MR

Based on simulations on the quantum electrodynamics of photons, researchers showed that the light–matter interaction in a nanolaser emitting at the anapole frequency could give rise to a surprisingly stable steady state, where light energy was strongly collected within the anapole and evanescently transmitted in a subwavelength area outside the nanostructure.

Such an “anapole nanolaser” could be used for a range applications, from efficient energy coupling to ultrafast pulse generation without the need of external design elements.

Fratalocchi said that the nanolasers would appear invisible to an observer until perturbed by a nearby object. Consequently, arranging the cylindrical light sources into a loop could produce a chain reaction of light emissions, tunable down to as small as femtosecond (fs) pulse times.

“You can think of this laser as an energy tank — once the laser is on, it stores light and doesn’t let it go until you want to collect it,” he said.

Anapole nanolasers could offer a useful platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry. The team’s models suggest that integrating different loops of anapole nanolasers could produce oscillating, dynamic patterns useful for reproducing brain-like activities, such as machine learning and memory retrieval, at low cost.

“It's really like a population of fireflies, where the individuals synchronize their emissions into beautiful patterns,” Fratalocchi said. “When we place the nanolasers close together, we can get similar control over the pulses.”

The research was published in Nature Communications (doi:10.1038/ncomms15535).

Published: August 2017
Glossary
nonlinear optics
Nonlinear optics is a branch of optics that studies the optical phenomena that occur when intense light interacts with a material and induces nonlinear responses. In contrast to linear optics, where the response of a material is directly proportional to the intensity of the incident light, nonlinear optics involves optical effects that are not linearly dependent on the input light intensity. These nonlinear effects become significant at high light intensities, such as those produced by...
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
nanophotonics
Nanophotonics is a branch of science and technology that explores the behavior of light on the nanometer scale, typically at dimensions smaller than the wavelength of light. It involves the study and manipulation of light using nanoscale structures and materials, often at dimensions comparable to or smaller than the wavelength of the light being manipulated. Aspects and applications of nanophotonics include: Nanoscale optical components: Nanophotonics involves the design and fabrication of...
plasmonics
Plasmonics is a field of science and technology that focuses on the interaction between electromagnetic radiation and free electrons in a metal or semiconductor at the nanoscale. Specifically, plasmonics deals with the collective oscillations of these free electrons, known as surface plasmons, which can confine and manipulate light on the nanometer scale. Surface plasmons are formed when incident photons couple with the conduction electrons at the interface between a metal or semiconductor...
Research & TechnologyeducationAsia-PacificLaserssilicon photonicsLight Sourcespulsed lasersultrafast lasersnonlinear opticsnanonanophotonicsnanoscale devicesplasmonicsanapole state

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.