ON DEMAND: See how real-time data processing, advanced SWIR and UV imaging, and on-chip spectral advancements are shaping the future of hyperspectral imaging!
Register
Sign In
Suppliers
Products
Categories
Handbook
Dictionary
Careers
Resources
Photonics Spectra
BioPhotonics
Vision Spectra
Virtual Events & Summits
Educational Institutions
Add/Update Your Listing
Exhibitor Listing Portal
Become an Exhibitor
Buyers' Guide Print Edition
Marketplace Help
Subscribe
Advertise
Suppliers
Products
Categories
Handbook
Dictionary
Careers
Resources
Photonics Spectra
BioPhotonics
Vision Spectra
Virtual Events & Summits
Educational Institutions
Add/Update Your Listing
Exhibitor Listing Portal
Become an Exhibitor
Buyers' Guide Print Edition
Marketplace Help
Register
Sign In
Photonics Dictionary
diffraction
Diffraction is a fundamental wave phenomenon that occurs when a wave encounters an obstacle or aperture, causing the wave to bend around the edges and spread out. This effect is most commonly observed with light waves, but it can also occur with other types of waves, such as sound waves, water waves, and even matter waves in quantum mechanics.
Wave interaction:
Diffraction occurs when a wave encounters an obstacle (e.g., an edge or slit) or a series of obstacles, such as a diffraction grating. The wave interacts with these obstacles, causing the wave to change direction and spread out.
Huygens' principle:
This principle explains diffraction by stating that each point on a wavefront acts as a source of secondary spherical wavelets. As these wavelets propagate, they interfere with each other, leading to the bending and spreading of the wave.
Single-slit diffraction:
When a wave passes through a single narrow slit, it spreads out on the other side, forming a pattern of alternating bright and dark fringes. The central maximum is the brightest and widest, with successive maxima decreasing in intensity.
Double-slit diffraction:
When a wave passes through two closely spaced slits, the wavefronts emerging from each slit interfere with each other, creating an interference pattern of bright and dark fringes on a screen. This experiment famously demonstrates the wave nature of light.
Diffraction gratings:
A diffraction grating consists of many closely spaced slits or grooves. When light passes through or reflects off a grating, it produces multiple diffraction orders, resulting in a spectrum of colors. This property is widely used in spectroscopy.
Applications:
Optics:
Diffraction is used in optical instruments such as spectrometers, microscopes, and cameras to analyze light properties.
Acoustics:
Understanding diffraction helps in designing auditoriums and concert halls to control sound distribution.
X-Ray crystallography:
X-ray diffraction is used to determine the atomic structure of crystals.
Quantum mechanics:
Diffraction experiments with particles such as electrons demonstrate the wave-particle duality of matter.
Mathematical description:
Diffraction patterns can be mathematically described using the wave equation and principles of superposition. The intensity of the diffraction pattern can be calculated using equations such as the Fraunhofer and Fresnel diffraction equations, depending on the distance from the diffracting object.
Examples of diffraction:
Light:
The fringes of light and dark bands observed when light passes through a narrow slit or around a small object.
Sound:
The ability to hear sound waves around obstacles, such as hearing someone speaking from around a corner.
Water waves:
The bending and spreading of water waves as they pass through an opening in a barrier or around an object in the water.
Media
Videos
diffraction
Presented by Keith Tripp, Three Rivers Community College
See Also
Related Terms
photon sieve
Related Articles
Photonics Spectra Nov 2024
Fourth-Generation Optics Surmount the Limitations of Planar Optics
Products & Suppliers
Related Categories
12 companies
Acousto-Optic Crystals
5 companies
X-Ray Diffractometers
Popular Articles
Diffraction Gratings: Selection Guidelines
What Is Photonics?
Fiber Lasers: Continuing to Power Growth
Scatter and BSDF Measurements: Theory and Practice
Detectors: Options for Low-Light Applications
Explore Our Content
News
Features
Latest Products
Webinars
White Papers
All Things Photonics Podcast
Photonics Spectra
Now
Videos
Our Summits & Conferences
Industry Events
Bookstore
Join Our Community
Subscribe
Advertise
Become a member
Sign in
Contribute a Feature
Suggest a Webinar
Submit a Press Release
Mobile Apps
About Us
Our Company
Our Publications
Contact Us
Career Opportunities
Teddi C. Laurin Scholarship
Terms & Conditions
Privacy Policy
California Consumer Privacy Act (CCPA)
©2025 Photonics Media
100 West St.
Pittsfield, MA, 01201 USA
[email protected]
Requesting information about:
*
First Name:
*
Last Name:
*
Email Address:
*
Company:
*
Country:
Please select your country
Afghanistan
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua and Barbuda
Argentina
Armenia
Aruba
Ascension Island
Australia
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
Brunei Darussalam
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Cape Verde
Cayman Islands
Central African Republic
Chad
Chile
China
Colombia
Comoros
Congo
Cook Islands
Costa Rica
Croatia
Cuba
Curacao
Cyprus
Czech Republic
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
France
French Guiana
French Polynesia
Gabon
Gambia
Gaza
Georgia
Germany
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hong Kong
Hungary
Iceland
India
Indonesia
Iran
Iraq
Ireland
Isle of Man
Israel
Italy
Ivory Coast
Jamaica
Japan
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mexico
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
Netherlands
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
North Macedonia
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestine
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Poland
Portugal
Puerto Rico
Qatar
Reunion
Romania
Russia
Rwanda
Saint Helena
Saint Kitts and Nevis
Saint Lucia
Saint Vincent and the Grenadines
Samoa
San Marino
Sao Tome and Principe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Singapore
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Korea
South Sudan
Spain
Sri Lanka
Sudan
Suriname
Sweden
Switzerland
Syria
Taiwan
Tajikistan
Tanzania
Thailand
Timor-Leste
Togo
Tonga
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Turks and Caicos
Tuvalu
Uganda
Ukraine
United Arab Emirates
United Kingdom
United States
Uruguay
Uzbekistan
Vanuatu
Vatican City State
Venezuela
Vietnam
Virgin Islands - British
Virgin Islands - U.S.
Yemen
Zambia
Zimbabwe
Message:
When you click "Send Request", we will record and send your personal contact information to the supplier by email so they may respond directly. You also agree that Photonics Media may contact you with information related to this inquiry, and that you have read and accept our
Privacy Policy
and
Terms and Conditions of Use
.
* Required
We use cookies to improve user experience and analyze our website traffic as stated in our
Privacy Policy
. By using this website, you agree to the use of
cookies
unless you have disabled them.