Search
Menu
Lambda Research Optics, Inc. - DFO

“Virtual” Interferometers Could Minimize Size of Optical Processing Circuitry

Facebook X LinkedIn Email
A novel technique dubbed “measurement-based linear optics” could enable miniaturization of the optical processing circuitry required for quantum computers by using virtual interferometers instead of large-scale physical ones.

According to researcher Rafael Alexander, conventional interferometers that comprise hundreds or even thousands of optical elements are essential to implementing fully functional optical quantum computers.

Virtual interferometers for optical quantum computing. RMIT University, Melbourne, Australia.
Measurement-based linear optics implements a huge multimode interferometer consisting of beamsplitters (green) and phase delays (blue). The size of the virtual interferometer can be many hundreds or thousands of optical elements, despite the small size of the physical experiment. Courtesy of R. Alexander et al./APS.

“Measurement-based linear optics circumvents many of the challenges facing the conventional optics approach by using large virtual interferometers instead of physical ones. By applying a specific sequence of measurements to a continuous-variable cluster state, the measurements themselves program and implement the interferometer,” said Alexander. 

The virtual, measurement-based interferometers are programmed in real time through the choice of homodyne measurement angles. The effects of finite squeezing are captured as uniform amplitude damping.

Meadowlark Optics - Wave Plates 6/24 MR 2024

“Six beamsplitters and a few squeezed light sources give us the potential to access virtual optical networks of an immense size,” said researcher Nicolas Menicucci.

Alexander said that the team, composed of researchers from RMIT University, the University of Sydney and the University of Technology Sydney, used “a gigantic cluster state composed of modes of light correlated in time or frequency, which can be generated using just one or two optical parametric oscillators (which implement optical squeezing) and just a handful of beamsplitters.”

The team compared its technique to existing physical interferometers and considered use of its technique for Boson sampling. The technique demonstrated efficiency in time and squeezing, showing the capacity to yield cluster states composed of more than one million entangled modes.

To overcome noise distortion — a common problem faced by virtual approaches — the team converted the noise to simple photon loss, which made the noise distortion easier to manage.

According to Alexander, the team drew inspiration for its novel approach to virtual interferometry from quantum teleportation.

“Measurement-based linear optics has the potential to reshape how we think about the interference of light,” said Menicucci. “It ports the demonstrated scalability of continuous variable cluster states to the broad range of linear-optics applications.”

The research was published in Physical Review Letters (doi: 10.1103/PhysRevLett.118.110503). 

Published: April 2017
Glossary
linear optics
Linear optics refers to the study and manipulation of light in a linear and deterministic manner, where the response of optical elements is proportional to the amplitude of the incident light wave. In the context of linear optics, the superposition principle holds, meaning that the total response of a system to a sum of different input light waves is simply the sum of the responses to each individual wave. Key characteristics of linear optics include: Superposition: Linear optics adheres to...
metrology
Metrology is the science and practice of measurement. It encompasses the theoretical and practical aspects of measurement, including the development of measurement standards, techniques, and instruments, as well as the application of measurement principles in various fields. The primary objectives of metrology are to ensure accuracy, reliability, and consistency in measurements and to establish traceability to recognized standards. Metrology plays a crucial role in science, industry,...
Research & TechnologyeducationAsia-PacificOpticsinterferometerslinear opticsquantum computingoptical processingmetrologyTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.