Search
Menu
Meadowlark Optics - Wave Plates 6/24 LB 2024

Team Taps Chalcogenide For Flexible Devices

Facebook X LinkedIn Email
A method for making photonic devices that can bend and stretch without damage could find uses in cables to connect computer devices, or in diagnostic and monitoring systems that could be attached to the skin.

A new material produced by Juejun Hu and his team can be repeatedly stretched without losing its optical properties.
A new material produced by Juejun Hu and his team can be repeatedly stretched without losing its optical properties. Courtesy of MIT.

A research team from MIT, the University of Texas, Xiamen University and Chongqing University in China, Universite Paris-Sud in France, the University of Southampton in the UK, and the University of Central Florida used a specialized kind of glass called chalcogenide for their device.

“Most current photonics devices are fabricated from rigid materials on rigid substrates, and thus have an inherent mismatch for applications that should be soft like human skin,” said Juejun Hu, an associate professor at MIT. “But most soft materials, including most polymers, have a low refractive index, which leads to a poor ability to confine a light beam.”

Instead of using such flexible materials, Hu and his team formed a thin layer of the chalcogenide into a spring-like coil. Just as steel can be made to stretch and bend when formed into a spring, the architecture of this glass coil allowed it to stretch and bend freely while maintaining its desirable optical properties.

LightPath Technologies -  Germanium Alternative1-25 MR

"You end up with something as flexible as rubber, that can bend and stretch, and still has a high refractive index and is very transparent," said Hu.

Tests have shown that such spring-like configurations, made directly on a polymer substrate, can undergo thousands of stretching cycles with no detectable degradation in their optical performance. The team produced a variety of photonic components, interconnected by the flexible, spring-like waveguides, all in an epoxy resin matrix, which was made stiffer near the optical components and more flexible around the waveguides.

This research is still in the early stages as Hu's team has demonstrated only single devices.

"For it to be useful, we have to demonstrate all the components integrated on a single device," said Hu. Work is ongoing to develop the technology to that point so that it could be commercially applied, which Hu says could take another two to three years.

Such flexible, stretchable photonic circuits could be useful for applications where the devices need to conform to the uneven surfaces of some other material, such as in strain gauges. Optics technology is very sensitive to strain, according to Hu, and could detect deformations of less than 1/100th of 1 percent.

The research has been published in the journal Nature Photonics (doi:10.1038/s41566-017-0033-z), and is supported by the National Science Foundation.

Published: November 2017
Glossary
glass
A noncrystalline, inorganic mixture of various metallic oxides fused by heating with glassifiers such as silica, or boric or phosphoric oxides. Common window or bottle glass is a mixture of soda, lime and sand, melted and cast, rolled or blown to shape. Most glasses are transparent in the visible spectrum and up to about 2.5 µm in the infrared, but some are opaque such as natural obsidian; these are, nevertheless, useful as mirror blanks. Traces of some elements such as cobalt, copper and...
chalcogenide
Chalcogenide refers to a class of compounds containing elements from group 16 of the periodic table, which includes sulfur (S), selenium (Se), and tellurium (Te). These elements are known as chalcogens. Chalcogenides are typically formed by combining one or more chalcogens with other elements, such as metals or metalloids. Chalcogenides are of particular interest in materials science and technology due to their unique properties, which include: Semiconductor behavior: Many chalcogenides...
Research & TechnologyeducationAmericasEuropeAsia-PacificLEDsMaterialsSensors & DetectorsglassBiophotonicsmedicalMITUniversity of TexasXiamen UniversityChongqing UniversityUniversite Paris-SudUniversity of SouthamptonUniversity of Central FloridaJuejun HuOpticscomponentschalcogenideAsia-Pacific Special Section

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.