Search
Menu
Excelitas Technologies Corp. - X-Cite Vitae LB 11/24

Squeezed Light Reduces Noise, Could Speed Quantum Sensing

Facebook X LinkedIn Email
OAK RIDGE, Tenn., June 20, 2019 — Oak Ridge National Laboratory (ORNL) physicists studying quantum sensing, which could affect a range of potential applications from airport security scanning to gravitational wave measurements, said that certain quantum sensors can use a squeezed state of light to reduce statistical noise that occurs in ordinary light. “Quantum-enhanced microscopes are particularly exciting,” research scientist Benjamin Lawrie said. “These quantum sensors can ‘squeeze’ the uncertainty in optical measurements, reducing the uncertainty in one variable while increasing the uncertainty elsewhere.” 

Squeezed light reduces noise, ORNL.
Certain quantum sensors can use a squeezed state of light to greatly reduce statistical noise that occurs in ordinary light. Courtesy of B.J. Lawrie et al., “Quantum Sensing with Squeezed Light,”
ACS Photonics.

Squeezed light is a quantum state where the statistical noise that occurs in ordinary light is greatly reduced. Squeezed atomic force microscopes could operate hundreds of times faster than current microscopes while providing a nanoscale description of high-speed electronic interactions in materials, the ORNL researchers said. This advance could be made possible by removing a requirement in most atomic force microscopes that the microscope operate at a single frequency. Future sensing technologies that harness quantum properties could be deployed as new quantum-enabled devices or as “plug-ins” for existing sensors.

The research was published in ACS Photonics (https://doi.org/10.1021/acsphotonics.9b00250).  
Opto Diode Corp. - Detector Spotlight 10-24 MR

Published: June 2019
Glossary
quantum sensing
Quantum sensing refers to a class of sensing technologies that leverage principles from quantum mechanics to enhance the precision and sensitivity of measurements. Traditional sensors operate based on classical physics, but quantum sensing exploits quantum properties, such as superposition and entanglement, to achieve improved performance in terms of accuracy, resolution, and sensitivity. Key concepts and characteristics of quantum sensing include: Superposition: Quantum sensors can...
quantum optics
The area of optics in which quantum theory is used to describe light in discrete units or "quanta" of energy known as photons. First observed by Albert Einstein's photoelectric effect, this particle description of light is the foundation for describing the transfer of energy (i.e. absorption and emission) in light matter interaction.
quantum sensingquantum opticsquantum noise reductionResearch & TechnologyeducationAmericasLight Sourcessqueezed lightMicroscopyatomic force microscopySensors & DetectorsORNL

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.