Search
Menu
Lambda Research Optics, Inc. - Limited Time Offer

Solid-state Sensor Combines Optics, Electronics

Facebook X LinkedIn Email
PITTSBURGH, Nov. 17, 2010 — University of Pittsburgh researchers have created a nanoscale light sensor that can be combined with near-atomic-size electronic circuitry to produce hybrid optic and electronic devices with new functionality. The team, which also involved researchers from the University of Wisconsin-Madison, reports in Nature Photonics that the development overcomes one of nanotechnology’s most daunting challenges.

The group, led by Jeremy Levy, a professor of physics and astronomy in Pittsburgh’s School of Arts and Sciences, fashioned a photonic device less than 4 nm wide, enabling on-demand photonic interaction with objects as small as single molecules or quantum dots. In another first, the tiny device can be electrically tuned to change its sensitivity to different colors in the visible spectrum, which may forgo the need for the separate light filters other sensors typically require.


A microscope image of the light sensor shows the peaking photocurrent as it originates from the gap between the Etch A Sketch nanowires (in black). The Pitt researchers are the first to create a solid-state, oxide nanoelectronic device that combines electrical and optical capabilities onto one platform.

Levy worked with Pittsburgh postdoctoral researcher and lead author Patrick Irvin, postdoctoral researchers Daniela Bogorin and Cheng Cen, and graduate student Yanjun Ma. Also part of the team were University of Wisconsin-Madison researchers Chang-Beom Eom, a professor of materials science and engineering, and research associates Chung Wung Bark and Chad Folkman.

The researchers produced the photonic devices via a rewritable nanoelectronics platform developed in Levy’s lab that works like a microscopic Etch A Sketch, the drawing toy that initially inspired him. His technique, first reported in Nature Materials in March 2008, is a method to switch an oxide crystal between insulating and conducting states. Applying a positive voltage to the sharp conducting probe of an atomic force microscope creates conducting wires only a few nanometers wide at the interface of two insulators — a 1.2-nm-thick layer of lanthanum aluminate grown on a strontium titanate substrate. The conducting nanowires can then be erased with reverse voltage, rendering the interface an insulator once more.

Perkins Precision Developments - Custom Laser Mirrors MR 4/24

In February 2009, Levy reported in Science that his platform could be used to sculpt a high-density memory device and a transistor called a “SketchFET” with features a mere 2 nm in size.

In this recent work, Levy and his colleagues demonstrated a robust method for incorporating light sensitivity into these electronic circuits, using the same techniques and materials. Photonic devices generate, guide or detect light waves for a variety of applications, Levy said. Light is remarkably sensitive to the properties of nanoscale objects such as single molecules or quantum dots, but the integration of semiconductor nanowire and nanotube photonic devices with other electronic circuit elements has always been a challenge.

“These results may enable new possibilities for devices that can sense optical properties at the nanoscale and deliver this information in electronic form,” Levy said.

For more information, visit:  www.pitt.edu 



Published: November 2010
Glossary
astronomy
The scientific observation of celestial radiation that has reached the vicinity of Earth, and the interpretation of these observations to determine the characteristics of the extraterrestrial bodies and phenomena that have emitted the radiation.
atomic force microscope
An atomic force microscope (AFM) is a high-resolution imaging and measurement instrument used in nanotechnology, materials science, and biology. It is a type of scanning probe microscope that operates by scanning a sharp tip (usually a few nanometers in diameter) over the surface of a sample at a very close distance. The tip interacts with the sample's surface forces, providing detailed information about the sample's topography and properties at the nanoscale. atomic force microscope...
light
Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
light filter
A homogeneous optical medium or coating that transmits only in particular regions of the spectrum. It is used to change or modify the total or relative energy distribution of a beam of light.
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
nanotube
A nanotube, also known as a nanotubule or simply a tube-like structure, is a nanoscale cylindrical structure composed of various materials, including carbon, boron nitride, or other compounds. Nanotubes have unique physical and chemical properties due to their small size and specific atomic arrangement, making them of significant interest in various scientific and technological fields. One of the most well-known types of nanotubes is the carbon nanotube (CNT), which is composed of carbon...
probe
Acronym for profile resolution obtained by excitation. In its simplest form, probe involves the overlap of two counter-propagating laser pulses of appropriate wavelength, such that one pulse selectively populates a given excited state of the species of interest while the other measures the increase in absorption due to the increase in the degree of excitation.
sensor
1. A generic term for detector. 2. A complete optical/mechanical/electronic system that contains some form of radiation detector.
substrate
A substrate refers to a material or surface upon which another material or process is applied or deposited. In various fields, such as electronics, biology, chemistry, and manufacturing, the term "substrate" is used with specific contexts, but the fundamental definition remains consistent: it is the underlying material or surface that provides a foundation for subsequent processes or applications. Here are some examples of how a substrate is used in different fields: Electronics: In...
transistor
An electronic device consisting of a semiconductor material, generally germanium or silicon, and used for rectification, amplification and switching. Its mode of operation utilizes transmission across the junction of the donor electrons and holes.
visible spectrum
That region of the electromagnetic spectrum to which the retina is sensitive and by which the eye sees. It extends from about 400 to 750 nm in wavelength.
Americasastronomyatomic force microscopeBasic ScienceChad FolkmanChang-Beom EomCheng CenChung Wung BarkcircuitryDaniela BogorinelectronicEtch-a-SketchFiltersImaginginsulatorInterfaceJeremy Levylanthanum aluminatelightlight filterLight Sourcesmemory deviceMicroscopymolecularnanonanoelectronicnanoscalenanotubenanowireNature MaterialsNature PhotonicsOpticsoxide crystalPatrick IrvinPennsylvaniaphotonicprobequantum dotResearch & TechnologysciencesensorSensors & DetectorsSketchFETstrontium titanatesubstratetransistortuneUniversity of PittsburghUniversity of Wisconsin-Madisonvisible spectrumvoltageWisconsinYanjun MaLEDs

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.