Search
Menu
Excelitas Technologies Corp. - X-Cite Vitae LB 11/24

Solar Cell Efficiency Rises

Facebook X LinkedIn Email
WINSTON-SALEM, N.C., April 23, 2007 -- Plastic solar cell efficiency has been pushed to more than 6 percent via “nanofilaments” within light-absorbing plastic, similar to the veins in tree leaves, enabling the use of thicker absorbing layers in the devices which capture more sunlight.

A paper by researchers at the Wake Forest University Center for Nanotechnology and Molecular Materials, to be published in an upcoming issue of Applied Physics Letters, describes how they have achieved the record efficiency for organic or flexible, plastic solar cells. Efficient plastic solar cells are extremely desirable because they are inexpensive and lightweight, especially in comparison to traditional silicon solar panels. Traditional solar panels are heavy and bulky and convert about 12 percent of the light that hits them to useful electrical power, the researchers said in a university statement.
wakeforst.jpg
David Carroll, director of the Wake Forest nanotechnology center (Photo courtesy Wake Forest University)
Scientists have worked for years to create flexible, or “conformal,” organic solar cells that can be wrapped around surfaces, rolled up or even painted onto structures. Three percent was the highest efficiency ever achieved for plastic solar cells until 2005, when David Carroll, director of the Wake Forest nanotechnology center, and his research group announced they had come close to reaching 5 percent efficiency. Now, a little more than a year later, Carroll said his group has surpassed 6 percent.

"Within only two years we have more than doubled the 3 percent mark,” Carroll said. “I fully expect to see higher numbers within the next two years, which may make plastic devices the photovoltaic of choice.” In order to be considered a viable technology for commercial use, solar cells must be able to convert about 8 percent of the energy in sunlight to electricity. Wake Forest researchers hope to reach 10 percent in the next year, said Carroll, who is also associate professor of physics at Wake Forest.

AdTech Ceramics - Ceramic Packages 1-24 MR
wakeforest2.jpg
Jiwen Liu, a researcher in the Wake Forest University Center for Nanotechnology and Molecular Materials, tests a new solar cell in the center's laboratory in Winston-Salem, N.C. (Photo courtesy Wake Forest University)
Because they are flexible and easy to work with, plastic solar cells could be used as a replacement for roof tiling or home siding products or incorporated into traditional building facades. These energy-harvesting devices could also be placed on automobiles. Since plastic solar cells are much lighter than the silicon solar panels, structures do not have to be reinforced to support additional weight.

A large part of Carroll’s research is funded by the US Air Force, which is interested in the potential uses of more efficient, lightweight solar cells for satellites and spacecraft. Other members of Carroll’s research team include Jiwen Liu and Manoj Namboothiry, postdoctoral associates at Wake Forest’s nanotechnology center, and Kyungkon Kim, a postdoctoral researcher at the center, who has moved to the Materials Science & Technology Division at the Korea Institute of Science and Technology in Seoul.

Fore more information, visit: wfu.edu

Published: April 2007
Glossary
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
BiophotonicsCenter for Nanotechnology and Molecular Materialsenergylight-absorbing plasticnanonanofilamentsNews & FeaturesphotonicsPhotonics Spectraplastic solar cellssolar cellsWake Forest University

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.