Search
Menu
Perkins Precision Developments - Custom HEL Mirrors Static LB 8/24

Single-Atom Laser Realized

Facebook X LinkedIn Email
INNSBRUCK, Austria, March 31, 2010 — Researchers in Austria have successfully realized a single-atom laser, an important step toward a fundamental understanding of laser operation in the few-atom limit, including systems based on semiconductor quantum dots or molecules.


A single calcium ion is confined in an ion trap and excited by external lasers. (Photo: C. Lackner)

A laser normally consists of a gain medium, which is electrically or optically pumped, inside a highly reflective optical cavity (or resonator). The light in the cavity bounces back and forth in the form of modes whereby it is amplified repeatedly. One of the distinctive features of a classical laser is the steep increase of output power when a certain pumping threshold is reached. At this point the gain (amplification by the medium) equals the losses as the light circulates through the cavity. This is caused by the amplification of the interaction between light and atoms: The more photons are present in a mode the stronger the amplification of the light in the mode. This stimulated emission is usually observed in macroscopic lasers comprising of many atoms and photons.

"Quantum" lasers have shown thresholdless lasing when there is strong coupling between an atom and a radiation field, but the existence of a threshold has been predicted. Rainer Blatt and Piet Schmidt and their team at the University of Innsbruck demonstrated and characterized a single-atom laser with and without threshold behavior by changing, or tuning, the strength of atom/light-field coupling.

"We have demonstrated that a laser threshold can be achieved at the single-atom level, although much less pronounced compared with classical lasers as a consequence of the low photon number in the lasing mode," the researchers wrote in their paper on the work, which appears this week in the journal Nature Physics.

Sheetak -  Cooling at your Fingertip 11/24 MR

In their research, a single calcium ion is confined in an ion trap and excited by external lasers. A high-finesse optical cavity consists of two mirrors, which traps and accumulates the photons emitted by the ion into a mode. The ion is excited cyclically by an external laser and at each cycle a photon is added to the cavity mode, which amplifies the light.


A high-finesse optical cavity consists of two mirrors, which traps and accumulates the photons emitted by the ion into a mode. The ion is excited cyclically by an external laser and at each cycle a photon is added to the cavity mode, which amplifies the light. (Illustration: Schmidt)

By choosing the right parameter of the drive laser, the physicists were able to achieve stronger excitation and, consequently, add more photons to the cavity. Although there was still less than one photon in the cavity, the researchers observed stimulated emission in the form of a threshold.

The trapped-ion laser could be useful to study new types of spectroscopy based on narrow-band optical excitation with quantum/classical statistical distributions, the researchers wrote. It is also suited for further investigations of the transition between quantum and classical lasers through controlled addition of more and more ions interacting with the light field.

This research work is supported by the Austrian Science Fund, the European Commission and the Federation of Austrian Industry Tirol.

For more information, visit: www.nature.com/nphys/index.html




Published: March 2010
Glossary
excitation
1. The process by which an atom acquires energy sufficient to raise it to a quantum state higher than its ground state. 2. More specifically with respect to lasers, the process by which the material in the laser cavity is stimulated by light or other means, so that atoms are converted to a semistable state, initiating the lasing process.
ion
An atom that has gained or lost one or more electrons and, as a result, carries a negative or positive charge.
light
Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
light field
The term light field refers to the spatial distribution of light rays traveling in all directions through a given space. It includes information about the intensity and direction of light rays at every point in a scene. In the context of imaging and photography, the light field is a comprehensive description of the light entering a camera or other optical system. Key points about light field include: Directional information: Unlike traditional photographs that capture only the total light...
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
quantum dots
A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
threshold
1. In visual perception, the minimum value of stimulus that can be perceived on the average. 2. In optical detection systems, that signal level at which the probability of detection is 50 percent.
atomAustriaclassical laserEuropeExcitationionlasinglightlight fieldmoleculesnanooptical cavityOptical ExcitationphotonsPiet Schmidtquantum dotsquantum laserRainer BlattResearch & Technologysingle-atomspectroscopythresholdtrapped-ionUniversity of InnsbruckLasers

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.